Approximation algorithms for NP-complete problems on planar graphs

Author(s):  
Brenda S. Baker
Author(s):  
Wenhong Tian ◽  
Wenxia Guo ◽  
Majun He

2013 ◽  
Vol 14 (8) ◽  
pp. 623-633
Author(s):  
Jorge A. Ruiz-Vanoye ◽  
Joaquín Pérez-Ortega ◽  
Rodolfo A. Pazos Rangel ◽  
Ocotlán Díaz-Parra ◽  
Héctor J. Fraire-Huacuja ◽  
...  

2010 ◽  
Vol 10 (1&2) ◽  
pp. 141-151
Author(s):  
S. Beigi

Although it is believed unlikely that $\NP$-hard problems admit efficient quantum algorithms, it has been shown that a quantum verifier can solve NP-complete problems given a "short" quantum proof; more precisely, NP\subseteq QMA_{\log}(2) where QMA_{\log}(2) denotes the class of quantum Merlin-Arthur games in which there are two unentangled provers who send two logarithmic size quantum witnesses to the verifier. The inclusion NP\subseteq QMA_{\log}(2) has been proved by Blier and Tapp by stating a quantum Merlin-Arthur protocol for 3-coloring with perfect completeness and gap 1/24n^6. Moreover, Aaronson et al. have shown the above inclusion with a constant gap by considering $\widetilde{O}(\sqrt{n})$ witnesses of logarithmic size. However, we still do not know if QMA_{\log}(2) with a constant gap contains NP. In this paper, we show that 3-SAT admits a QMA_{\log}(2) protocol with the gap 1/n^{3+\epsilon}} for every constant \epsilon>0.


2001 ◽  
Vol 12 (04) ◽  
pp. 533-550 ◽  
Author(s):  
WING-KAI HON ◽  
TAK-WAH LAM

The nearest neighbor interchange (nni) distance is a classical metric for measuring the distance (dissimilarity) between evolutionary trees. It has been known that computing the nni distance is NP-complete. Existing approximation algorithms can attain an approximation ratio log n for unweighted trees and 4 log n for weighted trees; yet these algorithms are limited to degree-3 trees. This paper extends the study of nni distance to trees with non-uniform degrees. We formulate the necessary and sufficient conditions for nni transformation and devise more topology-sensitive approximation algorithms to handle trees with non-uniform degrees. The approximation ratios are respectively [Formula: see text] and [Formula: see text] for unweighted and weighted trees, where d ≥ 4 is the maximum degree of the input trees.


Author(s):  
Dexter C. Kozen

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


Sign in / Sign up

Export Citation Format

Share Document