Excitation-Inhibition Balanced Spiking Neural Networks for Fast Information Processing

Author(s):  
Gengshuo Tian ◽  
Tiejun Huang ◽  
Si Wu
2010 ◽  
Vol 23 (7) ◽  
pp. 819-835 ◽  
Author(s):  
Simei Gomes Wysoski ◽  
Lubica Benuskova ◽  
Nikola Kasabov

2021 ◽  
pp. 1-27
Author(s):  
Friedemann Zenke ◽  
Tim P. Vogels

Brains process information in spiking neural networks. Their intricate connections shape the diverse functions these networks perform. Yet how network connectivity relates to function is poorly understood, and the functional capabilities of models of spiking networks are still rudimentary. The lack of both theoretical insight and practical algorithms to find the necessary connectivity poses a major impediment to both studying information processing in the brain and building efficient neuromorphic hardware systems. The training algorithms that solve this problem for artificial neural networks typically rely on gradient descent. But doing so in spiking networks has remained challenging due to the nondifferentiable nonlinearity of spikes. To avoid this issue, one can employ surrogate gradients to discover the required connectivity. However, the choice of a surrogate is not unique, raising the question of how its implementation influences the effectiveness of the method. Here, we use numerical simulations to systematically study how essential design parameters of surrogate gradients affect learning performance on a range of classification problems. We show that surrogate gradient learning is robust to different shapes of underlying surrogate derivatives, but the choice of the derivative's scale can substantially affect learning performance. When we combine surrogate gradients with suitable activity regularization techniques, spiking networks perform robust information processing at the sparse activity limit. Our study provides a systematic account of the remarkable robustness of surrogate gradient learning and serves as a practical guide to model functional spiking neural networks.


1988 ◽  
Vol 49 (1) ◽  
pp. 13-23 ◽  
Author(s):  
J.F. Fontanari ◽  
R. Köberle

2012 ◽  
Vol 35 (12) ◽  
pp. 2633 ◽  
Author(s):  
Xiang-Hong LIN ◽  
Tian-Wen ZHANG ◽  
Gui-Cang ZHANG

2020 ◽  
Vol 121 ◽  
pp. 88-100 ◽  
Author(s):  
Jesus L. Lobo ◽  
Javier Del Ser ◽  
Albert Bifet ◽  
Nikola Kasabov

Sign in / Sign up

Export Citation Format

Share Document