complex function
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 225)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Alfredo Figueroa-Melendez ◽  
Leonora Martinez-Nunez ◽  
Adriana Maria Rico-Ramirez ◽  
Juan Manuel Martinez-Andrade ◽  
Mary Munson ◽  
...  

The exocyst is a conserved multimeric complex that participates in the final steps of the secretion of vesicles. In the filamentous fungus Neurospora crassa, the exocyst is crucial for polar growth, morphology, and the organization of the Spitzenkorper (Spk), the apical body where secretory vesicles accumulate before being delivered to the plasma membrane. In the highly polarized cells of N. crassa, the exocyst subunits SEC-3, SEC-5, SEC-6, SEC-8, and SEC-15 were previously found localized at the plasma membrane of the apices of the cells, while EXO-70 and EXO-84 occupied the frontal outer layer of the Spk, occupied by vesicles. The localization of SEC-10 had remained so far elusive. In this work, SEC-10 was tagged with the green fluorescent protein (GFP) either at its N- or C-terminus and found localized at the plasma membrane of growing hyphal tips, similar to what was previously observed for some exocyst subunits. While expression of an N-terminally tagged version of SEC-10 at its native locus was fully viable, expression of a C-terminally tagged version at its native locus resulted in severe hyphal growth and polarity defects. Additionally, a sec-10 knockout mutant in a heterokaryotic state (with genetically different nuclei) was viable but showed a strongly aberrant phenotype, confirming that this subunit is essential to maintain hyphal morphogenesis. Transmission electron microscopy analysis revealed the lack of a Spk in the SEC-10-GFP strain, suggesting a critical role of the exocyst in the vesicular organization at the Spk. Mass spectrometry analysis revealed fewer peptides of exocyst subunits interacting with SEC-10-GFP than with GFP-SEC-10, suggesting an essential role of the C-terminus of SEC-10 in exocyst assembly and/or stability. Altogether, our data suggest that an unobstructed C-terminus of SEC-10 is indispensable for the exocyst complex function and that a GFP tag could be blocking important subunit-subunit interactions.


Author(s):  
Д.С. Синюков ◽  
А.Д. Данилов ◽  
А.А. Самодеенко ◽  
А.А. Иванников

Ядерные блоки атомных электростанций имеют длительный срок эксплуатации, что приводит к ситуации, когда в процессе эксплуатации технические и программные средства систем управления перестают отвечать текущим современным требованиям в плане надежности и безопасности их использования. В результате для продления срока действия ядерного блока требуется обязательное проведение модернизации информационно-вычислительной системы (ИВС) управления. Приводятся результаты такой работы, проведенной на 4 блоке Нововоронежской АЭС. При выборе оборудования для создания новой ИВС модернизируемого энергоблока был реализован принцип унификации. Программное обеспечение всех компонентов программно-технического комплекса ИВС, включая функции систем предоставления параметров безопасности и внутриреакторного контроля, реализовано на единых программных средствах. Представленные значения параметров сигналов на всех рабочих станциях программно-технического комплекса информационной системы, интерфейсы взаимодействия, человеко-машинный интерфейс и навигация по видеокадрам идентичны, что учитывает требования по оптимальному взаимодействию системы «человек-машина». Система удовлетворяет требованиям по обеспечению надёжности на основе резервирования, независимости, разнообразия, с учётом отказов по общей причине. Для этого ИВС была реализована в виде двухканальной информационной системы. Основной и дублирующий каналы измерения и обработки данных в программно-техническом комплексе ИВС функционируют одновременно в полном объеме. Разработанная информационно-вычислительная система позволила продлить срок эксплуатации 4 энергоблока Нововоронежской АЭС на 15 лет Nuclear units of nuclear power plants have a long service life, which leads to a situation when, during the operation, the technical and software tools of control systems no longer meet the current modern requirements in terms of reliability and safety of their use. As a result, in order to extend the validity period of the nuclear unit, mandatory modernization of the information and computing system (ICS) of management is required. This article presents the results of such work carried out at Unit 4 of the Novovoronezh NPP. When choosing the equipment to create a new ICS of the upgraded power unit, we implemented the principle of unification. The software of all components of the ICS software and hardware complex, including the functions of systems for providing security parameters and in-reactor control, is implemented on unified software tools. The representation of signal parameter values at all workstations of the software and hardware complex of the information system, the interfaces of human-machine interface interaction and navigation through video frames are identical, which takes into account the requirements for optimal interaction of the man-machine system. The system meets the requirements for ensuring reliability based on redundancy, independence, diversity, taking into account failures for a common reason. For this purpose, we implemented the ICS in the form of a two-channel information system. The main and backup channels of measurement and data processing in the ICS software and hardware complex function simultaneously in full. The developed information and computing system made it possible to extend the service life of 4 power units of the Novovoronezh NPP for 15 years


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Sonia Taïb ◽  
Noël Lamandé ◽  
Sabrina Martin ◽  
Fanny Coulpier ◽  
Piotr Topilko ◽  
...  

Peripheral nerves are vascularized by a dense network of blood vessels to guarantee their complex function. Despite the crucial role of vascularization to ensure nerve homeostasis and regeneration, the mechanisms governing nerve invasion by blood vessels remain poorly understood. We found, in mice, that the sciatic nerve invasion by blood vessels begins around embryonic day 16 and continues until birth. Interestingly, intra-nervous blood vessel density significantly decreases during post-natal period, starting from P10. We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during postnatal period.


2022 ◽  
pp. 325-353
Author(s):  
María Carmen Carnero ◽  
Javier Cárcel-Carrasco

The number of studies that assess the level of maintenance in a country is still very small, despite the contribution of this area to national competitiveness. The literature analyses asset management based on key performance indicators, but not via a multicriteria model. This chapter describes a multicriteria model, constructed by means of the fuzzy analytic hierarchy process (FAHP). The weightings are converted into utility functions, allowing the final utility of an alternative to be calculated via a multi-attribute utility function. Data on the state of asset management in Spain, in 2005 and 2010, are used to produce discrete probability distributions. Finally, a Monte Carlo simulation is applied to estimate the uncertainty of a complex function. In this way, the level of excellence of asset management in small businesses in Spain, before and after the recession, could be determined. The results show that the economic crisis experienced in Spain since 2008 has had a negative effect on the level of asset management in most sectors.


2021 ◽  
Author(s):  
Xianyu Xiong ◽  
Jun Dai ◽  
Xinnian chen ◽  
Yibo Ouyang

Abstract The stressed environment of the inclined coal seam roadway is complex and changeable, and the damage degree of surrounding rock increases, threatening the safe mining of coal mines. To improve the effectiveness of stability control of surrounding rock of this kind of roadway, the deformation and failure law of the inclined coal seam roadway is analyzed based on the complex function theory. It optimizes the solution process and accuracy of the mapping function coefficient and deduces the analytical solution of surrounding rock stress and deformation inclined coal seam roadway. The deformation and failure mechanism of surrounding rock in inclined coal seam roadway is revealed theoretically and verified by numerical simulation and physical simulation test. The results show that the stress and deformation of roadway surrounding rock in inclined coal seam show obvious asymmetric distribution characteristics. The stress and deformation of roadway surrounding rock on the right side are greater than on the left side. The two sides of the roadway, the right side of the roof and the roof angle of the right side, are the key positions of roadway stress concentration and deformation. According to the variation law of stress and deformation distribution of roadway surrounding rock, roadway cyclic deformation and failure theory is put forward. The numerical simulation and physical simulation test show that the deformation and failure law of roadway is consistent with the theoretical analysis results, and the cyclic deformation and failure mechanism of roadway in inclined coal seam is verified.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binesh Thankappan

A stable and holomorphic implementation of complex functions in ℂ plane making use of a unit circle-based transform is presented in this paper. In this method, any complex number or function can be represented as an infinite series sum of progressive products of a base complex unit and its conjugate only, where both are defined inside the unit circle. With each term in the infinite progression lying inside the unit circle, the sum ultimately converges to the complex function under consideration. Since infinitely large number of terms are present in the progression, the first element of which may be deemed as the base unit of the given complex number, it is addressed as complex baselet so that the complex number or function is termed as the complex baselet transform. Using this approach, various fundamental operations applied on the original complex number in ℂ are mapped to equivalent operations on the complex baselet inside the unit circle, and results are presented. This implementation has unique properties due to the fact that the constituent elements are all lying inside the unit circle. Out of numerous applications, two cases are presented: one of a stable implementation of an otherwise unstable system and the second case of functions not satisfying Cauchy–Riemann equations thereby not holomorphic in ℂ plane, which are made complex differentiable using the proposed transform-based implementation. Various lemmas and theorems related to this approach are also included with proofs.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guizhen Wang ◽  
Linglong Zhou ◽  
Reem Alotaibi ◽  
Roaya Hdeib

Abstract After reviewing many literature foundations, the thesis combines the basic methods of elastic mechanics with mathematical knowledge, sets the bipotential stress potential complex function and analyses the relationship between stress component, strain component and stress potential function, and applies the complex variable function. The expression of the relevant stress component is derived, and the displacement boundary conditions of the surrounding rock of shallow circular tunnel are obtained. Furthermore, the paper applies the basic theory of complex variable function to solve the boundary condition complex variable function for common tunnel sections, and obtains the analytical expression of the surrounding rock stress of shallow circular tunnel. The simulation is carried out by finite element method. The establishment of complex variable function has a good application value in solving the stress of surrounding rock of shallow tunnel.


2021 ◽  
Vol 11 (24) ◽  
pp. 11922
Author(s):  
Shuaishuai Hu ◽  
Junlin Li

The mechanical behavior of fine-grained piezoelectric/substrate structure with screw dislocation and interface edge crack under the coupling action of heat, force and electricity are studied. Using the mapping function method, firstly, the finite area plane is transformed into the right semi-infinite plane, then the expression of the temperature field is given with the help of the complex function, and then the temperature field of the problem is achieved. By constructing the general solution of the governing equation with temperature function, the analytical expression of the image force is derived. Finally, the effects of material parameters, temperature gradient, coating thickness and crack size on image force are analyzed by numerical examples. The results show that the temperature gradient has a very significant effect on the image force, and thicker coating is conducive to the stability of dislocation and interface crack.


2021 ◽  
Vol 9 ◽  
Author(s):  
Aiping Yao ◽  
Pengfei Yang ◽  
Mingjuan Ma ◽  
Yunfeng Pei

Elongated conductors, such as pacemaker leads, can couple to the MRI radio-frequency (RF) field during MRI scan and cause dangerous tissue heating. By selecting proper RF exposure conditions, the RF-induced power deposition can be suppressed. As the RF-induced power deposition is a complex function of multiple clinical factors, the problem remains how to perform the exposure selection in a comprehensive and efficient way. The purpose of this work is to demonstrate an exposure optimization trail that allows a comprehensive optimization in an efficient and traceable manner. The proposed workflow is demonstrated with a generic 40 cm long cardio pacemaker, major components of the clinical factors are decoupled from the redundant data set using principle component analysis, the optimized exposure condition can not only reduce the in vivo power deposition but also maintain good image quality.


Author(s):  
Koteswar Rao Bonagiri ◽  
Giri Babu Kande ◽  
P. Chandrasekhar Reddy

Estimation of Probability Density Functions (PDFs) in view of accessible information is critical issue emerging in various fields, for example, broadcast communications, machine learning, information mining, design pattern recognition and Personal Computer (PC) vision. In this paper, the Look-Up Table–Carry Select Adder-PDF (LUT-CSLA-PDF) mehod is implemented to increase system performance. The LUT is one of the fast way to recognize a complex function in the digital logic circuit. In this work, The FPGA (field programmable gate array) analysis, LUT, slices, flip flops, frequency are improved as well as ASIC (application specified integrated chip) implementation analysis an area, power, delay, Area Power Product (APP), Area Delay Product (ADP) are enhanced in LUT-CSLA-PDF technique compared to conventional methods.


Sign in / Sign up

Export Citation Format

Share Document