Disturbance Resilience Enhancement of Islanded Hybrid Microgrid Under High Penetration of Renewable Energy Resources by BESS

Author(s):  
Morteza Daviran Keshavarzi ◽  
Mohd. Hasan Ali
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 137407-137417 ◽  
Author(s):  
Navid Bayati ◽  
Hamid Reza Baghaee ◽  
Amin Hajizadeh ◽  
Mohsen Soltani

Author(s):  
Khaled Nusair ◽  
Lina Alhmoud

Over the last decades, the energy market around the world has reshaped due to accommodating the high penetration of renewable energy resources. Although renewable energy sources have brought various benefits, including low operation cost of wind and solar PV power plants, and reducing the environmental risks associated with the conventional power resources, they have imposed a wide range of difficulties in power system planning and operation. Naturally, classical optimal power flow (OPF) is a nonlinear problem. Integrating renewable energy resources with conventional thermal power generators escalates the difficulty of the OPF problem due to the uncertain and intermittent nature of these resources. To address the complexity associated with the process of the integration of renewable energy resources into the classical electric power systems, two probability distribution functions (Weibull and lognormal) are used to forecast the voltaic power output of wind and solar photovoltaic, respectively. Optimal power flow, including renewable energy, is formulated as a single-objective and multi-objective problem in which many objective functions are considered, such as minimizing the fuel cost, emission, real power loss, and voltage deviation. Real power generation, bus voltage, load tap changers ratios, and shunt compensators values are optimized under various power systems’ constraints. This paper aims to solve the OPF problem and examines the effect of renewable energy resources on the above-mentioned objective functions. A combined model of wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE 30-bus system are performed using the equilibrium optimizer technique (EO) and other five heuristic search methods. A comparison of simulation and statistical results of EO with other optimization techniques showed that EO is more effective and superior.


2018 ◽  
Vol 31 ◽  
pp. 02011 ◽  
Author(s):  
Heri Suyanto

Nowadays application of new and renewable energy as main resource of power plant has greatly increased. High penetration of renewable energy into the grid will influence the quality and reliability of the electricity system, due to the intermittent characteristic of new and renewable energy resources. Smart grid or microgrid technology has the ability to deal with this intermittent characteristic especially if these renewable energy resources integrated to grid in large scale, so it can improve the reliability and efficiency of the grid. We plan to implement smart microgrid system at Sekolah Tinggi Teknik PLN as a pilot project. Before the pilot project start, the feasibility study must be conducted. In this feasibility study, the renewable energy resources and load characteristic at the site will be measured. Then the technical aspect of this feasibility study will be analyzed. This paper explains that analysis of ths feasibility study.


Sign in / Sign up

Export Citation Format

Share Document