Integration of Sustainable Manufacturing Systems into Smart Grids with High Penetration of Renewable Energy Resources

Author(s):  
Jhi-Young Joo ◽  
Sriram Raghavan ◽  
Zeyi Sun
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 137407-137417 ◽  
Author(s):  
Navid Bayati ◽  
Hamid Reza Baghaee ◽  
Amin Hajizadeh ◽  
Mohsen Soltani

Author(s):  
Khaled Nusair ◽  
Lina Alhmoud

Over the last decades, the energy market around the world has reshaped due to accommodating the high penetration of renewable energy resources. Although renewable energy sources have brought various benefits, including low operation cost of wind and solar PV power plants, and reducing the environmental risks associated with the conventional power resources, they have imposed a wide range of difficulties in power system planning and operation. Naturally, classical optimal power flow (OPF) is a nonlinear problem. Integrating renewable energy resources with conventional thermal power generators escalates the difficulty of the OPF problem due to the uncertain and intermittent nature of these resources. To address the complexity associated with the process of the integration of renewable energy resources into the classical electric power systems, two probability distribution functions (Weibull and lognormal) are used to forecast the voltaic power output of wind and solar photovoltaic, respectively. Optimal power flow, including renewable energy, is formulated as a single-objective and multi-objective problem in which many objective functions are considered, such as minimizing the fuel cost, emission, real power loss, and voltage deviation. Real power generation, bus voltage, load tap changers ratios, and shunt compensators values are optimized under various power systems’ constraints. This paper aims to solve the OPF problem and examines the effect of renewable energy resources on the above-mentioned objective functions. A combined model of wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE 30-bus system are performed using the equilibrium optimizer technique (EO) and other five heuristic search methods. A comparison of simulation and statistical results of EO with other optimization techniques showed that EO is more effective and superior.


Author(s):  
Srujana Vungarala

Blockchain is the nascent technology which has the capability of incorruptible future in making. The blockchain mechanism is regarded for its security. In recent years, many have adopted for Blockchain. This paper tries to analyze some of the game changing technologies using blockchain mechanism. The paper has been framed by using secondary research and the authors’ opinion is also voiced.Blockchain-based application are springing up, covering numerous fields including financial services, Internet of Things (IoT), and Energy distribution systems Smart Grids uses blockchain to control the flow of energy. Blockchain, the foundation of Bitcoin, has received extensive attentions recently. Blockchain serves as an immutable ledger which allows transactions take place in a decentralized manner. Blockchain-Based Smart Grids presents emerging applications of blockchain in electrical system. As, Rapid growth of renewable energy resources in power systems we require a system through which we can monitor the consumption and supply of the electricity. This is sustainable and eco-friendly alternative. This paper is tailored to analyze the blockchain applications in Bitcoin and Smart Grid.


Sign in / Sign up

Export Citation Format

Share Document