Tracking of Interaction Points for Improved Dynamic Ray Tracing

Author(s):  
Florian Quatresooz ◽  
Simon Demey ◽  
Claude P. Oestges
Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. W1-W14 ◽  
Author(s):  
Einar Iversen

Inspired by recent ray-theoretical developments, the theory of normal-incidence rays is generalized to accommodate P- and S-waves in layered isotropic and anisotropic media. The calculation of the three main factors contributing to the two-way amplitude — i.e., geometric spreading, phase shift from caustics, and accumulated reflection/transmission coefficients — is formulated as a recursive process in the upward direction of the normal-incidence rays. This step-by-step approach makes it possible to implement zero-offset amplitude modeling as an efficient one-way wavefront construction process. For the purpose of upward dynamic ray tracing, the one-way eigensolution matrix is introduced, having as minors the paraxial ray-tracing matrices for the wavefronts of two hypothetical waves, referred to by Hubral as the normal-incidence point (NIP) wave and the normal wave. Dynamic ray tracing expressed in terms of the one-way eigensolution matrix has two advantages: The formulas for geometric spreading, phase shift from caustics, and Fresnel zone matrix become particularly simple, and the amplitude and Fresnel zone matrix can be calculated without explicit knowledge of the interface curvatures at the point of normal-incidence reflection.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 692-702 ◽  
Author(s):  
Peter Hubral ◽  
Jorg Schleicher ◽  
Martin Tygel

Zero‐offset reflections resulting from point sources are often computed on a large scale in three‐dimensional (3-D) laterally inhomogeneous isotropic media with the help of ray theory. The geometrical‐spreading factor and the number of caustics that determine the shape of the reflected pulse are then generally obtained by integrating the so‐called dynamic ray‐tracing system down and up to the two‐way normal incidence ray. Assuming that this ray is already known, we show that one integration of the dynamic ray‐tracing system in a downward direction with only the initial condition of a point source at the earth’s surface is in fact sufficient to obtain both results. To establish the Fresnel zone of the zero‐offset reflection upon the reflector requires the same single downward integration. By performing a second downward integration (using the initial conditions of a plane wave at the earth’s surface) the complete Fresnel volume around the two‐way normal ray can be found. This should be known to ascertain the validity of the computed zero‐offset event. A careful analysis of the problem as performed here shows that round‐trip integrations of the dynamic ray‐tracing system following the actually propagating wavefront along the two‐way normal ray need never be considered. In fact some useful quantities related to the two‐way normal ray (e.g., the normal‐moveout velocity) require only one single integration in one specific direction only. Finally, a two‐point ray tracing for normal rays can be derived from one‐way dynamic ray tracing.


2007 ◽  
Vol 226 (1) ◽  
pp. 672-687 ◽  
Author(s):  
Yue Tian ◽  
S.-H. Hung ◽  
Guust Nolet ◽  
Raffaella Montelli ◽  
F.A. Dahlen

Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S133-S138 ◽  
Author(s):  
Tianfei Zhu ◽  
Samuel H. Gray ◽  
Daoliu Wang

Gaussian-beam depth migration is a useful alternative to Kirchhoff and wave-equation migrations. It overcomes the limitations of Kirchhoff migration in imaging multipathing arrivals, while retaining its efficiency and its capability of imaging steep dips with turning waves. Extension of this migration method to anisotropic media has, however, been hampered by the difficulties in traditional kinematic and dynamic ray-tracing systems in inhomogeneous, anisotropic media. Formulated in terms of elastic parameters, the traditional anisotropic ray-tracing systems aredifficult to implement and inefficient for computation, especially for the dynamic ray-tracing system. They may also result inambiguity in specifying elastic parameters for a given medium.To overcome these difficulties, we have reformulated the ray-tracing systems in terms of phase velocity.These reformulated systems are simple and especially useful for general transversely isotropic and weak orthorhombic media, because the phase velocities for these two types of media can be computed with simple analytic expressions. These two types of media also represent the majority of anisotropy observed in sedimentary rocks. Based on these newly developed ray-tracing systems, we have extended prestack Gaussian-beam depth migration to general transversely isotropic media. Test results with synthetic data show that our anisotropic, prestack Gaussian-beam migration is accurate and efficient. It produces images superior to those generated by anisotropic, prestack Kirchhoff migration.


Sign in / Sign up

Export Citation Format

Share Document