Prestack Gaussian-beam depth migration in anisotropic media

Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S133-S138 ◽  
Author(s):  
Tianfei Zhu ◽  
Samuel H. Gray ◽  
Daoliu Wang

Gaussian-beam depth migration is a useful alternative to Kirchhoff and wave-equation migrations. It overcomes the limitations of Kirchhoff migration in imaging multipathing arrivals, while retaining its efficiency and its capability of imaging steep dips with turning waves. Extension of this migration method to anisotropic media has, however, been hampered by the difficulties in traditional kinematic and dynamic ray-tracing systems in inhomogeneous, anisotropic media. Formulated in terms of elastic parameters, the traditional anisotropic ray-tracing systems aredifficult to implement and inefficient for computation, especially for the dynamic ray-tracing system. They may also result inambiguity in specifying elastic parameters for a given medium.To overcome these difficulties, we have reformulated the ray-tracing systems in terms of phase velocity.These reformulated systems are simple and especially useful for general transversely isotropic and weak orthorhombic media, because the phase velocities for these two types of media can be computed with simple analytic expressions. These two types of media also represent the majority of anisotropy observed in sedimentary rocks. Based on these newly developed ray-tracing systems, we have extended prestack Gaussian-beam depth migration to general transversely isotropic media. Test results with synthetic data show that our anisotropic, prestack Gaussian-beam migration is accurate and efficient. It produces images superior to those generated by anisotropic, prestack Kirchhoff migration.

Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1474-1484 ◽  
Author(s):  
Tariq Alkhalifah

Gaussian beam migration (GBM), as it is implemented today, efficiently handles isotropic inhomogeneous media. The approach is based on the solution of the wave equation in ray‐centered coordinates. Here, I extend the method to work for 2-D migration in generally anisotropic inhomogeneous media. Extension of the Gaussian‐beam method from isotropic to anisotropic media involves modification of the kinematics and dynamics in the required ray tracing. While the accuracy of the paraxial expansion for anisotropic media is comparable to that for isotropic media, ray tracing in anisotropic media is much slower than that in isotropic media. However, because ray tracing is just a small portion of the computation in GBM, the increased computational effort in general anisotropic GBM is typically only about 40%. Application of this method to synthetic examples shows successful migration in inhomogeneous, transversely isotropic media for reflector dips up to and beyond 90°. Further applications to synthetic data of layered anisotropic media show the importance of applying the proper smoothing to the velocity field used in the migration. Also, tests with synthetic data show that the quality of anisotropic migration of steep events in a medium with velocity increasing with depth is much more sensitive to the Thomsen anisotropy parameter ε than to the parameter δ. Thus, a good estimate of ε is needed to apply anisotropic migration with confidence.


Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. S11-S23 ◽  
Author(s):  
Samuel H. Gray ◽  
Norman Bleistein

Gaussian-beam depth migration and related beam migration methods can image multiple arrivals, so they provide an accurate, flexible alternative to conventional single-arrival Kirchhoff migration. Also, they are not subject to the steep-dip limitations of many (so-called wave-equation) methods that use a one-way wave equation in depth to downward-continue wavefields. Previous presentations of Gaussian-beam migration have emphasized its kinematic imaging capabilities without addressing its amplitude fidelity. We offer two true-amplitude versions of Gaussian-beam migration. The first version combines aspects of the classic derivation of prestack Gaussian-beam migration with recent results on true-amplitude wave-equation migration, yields an expression involving a crosscorrelation imaging condition. To provide amplitude-versus-angle (AVA) information, true-amplitude wave-equation migration requires postmigration mapping from lateral distance (between image location and source location) to subsurface opening angle. However, Gaussian-beam migration does not require postmigration mapping to provide AVA data. Instead, the amplitudes and directions of the Gaussian beams provide information that the migration can use to produce AVA gathers as part of the migration process. The second version of true-amplitude Gaussian-beam migration is an expression involving a deconvolution imaging condition, yielding amplitude-variation-with-offset (AVO) information on migrated shot-domain common-image gathers.


2014 ◽  
Author(s):  
Duan XinYi* ◽  
Li Zhen Chun ◽  
Huang JianPing ◽  
Yang ShanShan ◽  
Zhang Qing

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC33-WC39 ◽  
Author(s):  
Claudia Vanelle ◽  
Dirk Gajewski

True-amplitude Kirchhoff depth migration is a classic tool in seismic imaging. In addition to a focused structural image, it also provides information on the strength of the reflectors in the model, leading to estimates of the shear properties of the subsurface. This information is a key feature not only for reservoir characterization, but it is also important for detecting seismic anisotropy. If anisotropy is present, it needs to be accounted for during the migration. True-amplitude Kirchhoff depth migration is carried out in terms of a weighted diffraction stack. Expressions for suitable weight functions exist in anisotropic media. However, the conventional means of computing the weights is based on dynamic ray tracing, which has high requirements on the smoothness of the underlying model. We developed a method for the computation of the weight functions that does not require dynamic ray tracing because all necessary quantities are determined from traveltimes alone. In addition, the method led to considerable savings in computational costs. This so-called traveltime-based strategy was already introduced for isotropic media. We extended the strategy to incorporate anisotropy. For verification purposes and comparison to analytic references, we evaluated 2.5D migration examples for [Formula: see text] and [Formula: see text] reflections. Our results confirmed the high image quality and the accuracy of the reconstructed reflectivities.


Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1240-1250 ◽  
Author(s):  
N. Ross Hill

Kirchhoff migration is the most popular method of three‐dimensional prestack depth migration because of its flexibility and efficiency. Its effectiveness can become limited, however, when complex velocity structure causes multipathing of seismic energy. An alternative is Gaussian beam migration, which is an extension of Kirchhoff migration that overcomes many of the problems caused by multipathing. Unlike first‐arrival and most‐energetic‐arrival methods, which retain only one traveltime, this alternative method retains most arrivals by the superposition of Gaussian beams. This paper presents a prestack Gaussian beam migration method that operates on common‐offset gathers. The method is efficient because the computation of beam superposition isolates summations that do not depend on the seismic data and evaluates these integrals by considering their saddle points. Gaussian beam migration of the two‐dimensional Marmousi test data set demonstrates the method’s effectiveness for structural imaging in a case where there is multipathing of seismic energy.


2021 ◽  
Vol 40 (4) ◽  
pp. 267-276
Author(s):  
Peter Mesdag ◽  
Leonardo Quevedo ◽  
Cătălin Tănase

Exploration and development of unconventional reservoirs, where fractures and in-situ stresses play a key role, call for improved characterization workflows. Here, we expand on a previously proposed method that makes use of standard isotropic modeling and inversion techniques in anisotropic media. Based on approximations for PP-wave reflection coefficients in orthorhombic media, we build a set of transforms that map the isotropic elastic parameters used in prestack inversion into effective anisotropic elastic parameters. When used in isotropic forward modeling and inversion, these effective parameters accurately mimic the anisotropic reflectivity behavior of the seismic data, thus closing the loop between well-log data and seismic inversion results in the anisotropic case. We show that modeling and inversion of orthorhombic anisotropic media can be achieved by superimposing effective elastic parameters describing the behavior of a horizontally stratified medium and a set of parallel vertical fractures. The process of sequential forward modeling and postinversion analysis is exemplified using synthetic data.


2013 ◽  
Vol 10 (2) ◽  
pp. 025013 ◽  
Author(s):  
Jiexiong Cai ◽  
Wubao Fang ◽  
Huazhong Wang

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. T281-T289 ◽  
Author(s):  
Qianru Xu ◽  
Weijian Mao

We have developed a fast ray-tracing method for multiple layered inhomogeneous anisotropic media, based on the generalized Snell’s law. Realistic geologic structures continuously varying with embedded discontinuities are parameterized by adopting cubic B-splines with nonuniformly spaced nodes. Because the anisotropic characteristic is often closely related to the interface configuration, this model parameterization scheme containing the natural inclination of the corresponding layer is particularly suitable for tilted transverse isotropic models whose symmetry axis is generally perpendicular to the direction of the layers. With this model parameterization, the first- and second-order spatial derivatives of the velocity within the interfaces can be effectively obtained, which facilitates the amplitude computation in dynamic ray tracing. By using complex initial conditions for the dynamic ray system and taking the multipath effect into consideration, our method is applicable to Gaussian beam migration. Numerical experiments of our method have been used to verify its effectiveness, practicability, and efficiency in memory storage and computation.


Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 947-963 ◽  
Author(s):  
Tariq Alkhalifah

Nearly all dip‐moveout correction (DMO) implementations to date assume isotropic homogeneous media. Usually, this has been acceptable considering the tremendous cost savings of homogeneous isotropic DMO and considering the difficulty of obtaining the anisotropy parameters required for effective implementation. In the presence of typical anisotropy, however, ignoring the anisotropy can yield inadequate results. Since anisotropy may introduce large deviations from hyperbolic moveout, accurate transformation to zero‐offset in anisotropic media should address such nonhyperbolic moveout behavior of reflections. Artley and Hale’s v(z) ray‐tracing‐based DMO, developed for isotropic media, provides an attractive approach to treating such problems. By using a ray‐tracing procedure crafted for anisotropic media, I modify some aspects of their DMO so that it can work for v(z) anisotropic media. DMO impulse responses in typical transversely isotropic (TI) models (such as those associated with shales) deviate substantially from the familiar elliptical shape associated with responses in homogeneous isotropic media (to the extent that triplications arise even where the medium is homogeneous). Such deviations can exceed those caused by vertical inhomogeneity, thus emphasizing the importance of taking anisotropy into account in DMO processing. For isotropic or elliptically anisotropic media, the impulse response is an ellipse; but as the key anisotropy parameter η varies, the shape of the response differs substantially from elliptical. For typical η > 0, the impulse response in TI media tends to broaden compared to the response in an isotropic homogeneous medium, a behavior opposite to that encountered in typical v(z) isotropic media, where the response tends to be squeezed. Furthermore, the amplitude distribution along the DMO operator differs significantly from that for isotropic media. Application of this anisotropic DMO to data from offshore Africa resulted in a considerably better alignment of reflections from horizontal and dipping reflectors in common‐midpoint gather than that obtained using an isotropic DMO. Even the presence of vertical inhomogeneity in this medium could not eliminate the importance of considering the shale‐induced anisotropy.


Sign in / Sign up

Export Citation Format

Share Document