Vehicle Detection in Thermal Images Using Deep Neural Network

Author(s):  
Chin-Wei Chang ◽  
Kathiravan Srinivasan ◽  
Yung-Yao Chen ◽  
Wen-Huang Cheng ◽  
Kai-Lung Hua
Author(s):  
Keyvan Kasiri ◽  
Mohammad Javad Shafiee ◽  
Francis Li ◽  
Alexander Wong ◽  
Justin Eichel

With the progress in intelligent transportation systems in smartcities, vision-based vehicle detection is becoming an important issuein the vision-based surveillance systems. With the advent ofthe big data era, deep learning methods have been increasinglyemployed in the detection, classification, and recognition applicationsdue to their performance accuracy, however, there are stillmajor concerns regarding deployment of such methods in embeddedapplications. This paper offers an efficient process leveragingthe idea of evolutionary deep intelligence on a state-of-the-art deepneural network. Using this approach, the deep neural network isevolved towards a highly sparse set of synaptic weights and clusters.Experimental results for the task of vehicle detection demonstratethat the evolved deep neural network can achieve a substantialimprovement in architecture efficiency adapting for GPUacceleratedapplications without significant sacrifices in detectionaccuracy. The architectural efficiency of ~4X-fold and ~2X-folddecrease is obtained in synaptic weights and clusters, respectively,while the accuracy of 92.8% (drop of less than 4% compared to theoriginal network model) is achieved. Detection results and networkefficiency for the vehicular application are promising, and opensthe door to a wider range of applications in deep learning.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7399
Author(s):  
Ming-Hwa Sheu ◽  
S M Salahuddin Morsalin ◽  
Jia-Xiang Zheng ◽  
Shih-Chang Hsia ◽  
Cheng-Jian Lin ◽  
...  

The aim of this paper is to distinguish the vehicle detection and count the class number in each classification from the inputs. We proposed the use of Fuzzy Guided Scale Choice (FGSC)-based SSD deep neural network architecture for vehicle detection and class counting with parameter optimization. The 'FGSC' blocks are integrated into the convolutional layers of the model, which emphasize essential features while ignoring less important ones that are not significant for the operation. We created the passing detection lines and class counting windows and connected them with the proposed FGSC-SSD deep neural network model. The 'FGSC' blocks in the convolution layer emphasize essential features and find out unnecessary features by using the scale choice method at the training stage and eliminate that significant speedup of the model. In addition, FGSC blocks avoided many unusable parameters in the saturation interval and improved the performance efficiency. In addition, the Fuzzy Sigmoid Function (FSF) increases the activation interval through fuzzy logic. While performing operations, the FGSC-SSD model reduces the computational complexity of convolutional layers and their parameters. As a result, the model tested Frames Per Second (FPS) on edge artificial intelligence (AI) and reached a real-time processing speed of 38.4 and an accuracy rate of more than 94%. Therefore, this work might be considered an improvement to the traffic monitoring approach by using edge AI applications.


Sign in / Sign up

Export Citation Format

Share Document