network architecture
Recently Published Documents


TOTAL DOCUMENTS

6388
(FIVE YEARS 3323)

H-INDEX

88
(FIVE YEARS 35)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-23
Author(s):  
Christoffer Löffler ◽  
Luca Reeb ◽  
Daniel Dzibela ◽  
Robert Marzilger ◽  
Nicolas Witt ◽  
...  

This work proposes metric learning for fast similarity-based scene retrieval of unstructured ensembles of trajectory data from large databases. We present a novel representation learning approach using Siamese Metric Learning that approximates a distance preserving low-dimensional representation and that learns to estimate reasonable solutions to the assignment problem. To this end, we employ a Temporal Convolutional Network architecture that we extend with a gating mechanism to enable learning from sparse data, leading to solutions to the assignment problem exhibiting varying degrees of sparsity. Our experimental results on professional soccer tracking data provides insights on learned features and embeddings, as well as on generalization, sensitivity, and network architectural considerations. Our low approximation errors for learned representations and the interactive performance with retrieval times several magnitudes smaller shows that we outperform previous state of the art.


Author(s):  
Ahmad Sharadqeh

Software defined networks (SDN) have replaced the traditional network architecture by separating the control from forwarding planes. SDN technology utilizes computer resources to provide worldwide effective service than the aggregation of single internet resources usage. Breakdown while resource allocation is a major concern in cloud computing due to the diverse and highly complex architecture of resources. These resources breakdowns cause delays in job completion and have a negative influence on attaining quality of service (QoS). In order to promote error-free task scheduling, this study represents a promising fault-tolerance scheduling technique. For optimum QoS, the suggested restricted Boltzmann machine (RBM) approach takes into account the most important characteristics like current consumption of the resources and rate of failure. The proposed approach's efficiency is verified using the MATLAB toolbox by employing widely used measures such as resource consumption, average processing time, throughput and rate of success.


2022 ◽  
Vol 40 (4) ◽  
pp. 1-46
Author(s):  
Hao Peng ◽  
Ruitong Zhang ◽  
Yingtong Dou ◽  
Renyu Yang ◽  
Jingyi Zhang ◽  
...  

Graph Neural Networks (GNNs) have been widely used for the representation learning of various structured graph data, typically through message passing among nodes by aggregating their neighborhood information via different operations. While promising, most existing GNNs oversimplify the complexity and diversity of the edges in the graph and thus are inefficient to cope with ubiquitous heterogeneous graphs, which are typically in the form of multi-relational graph representations. In this article, we propose RioGNN , a novel Reinforced, recursive, and flexible neighborhood selection guided multi-relational Graph Neural Network architecture, to navigate complexity of neural network structures whilst maintaining relation-dependent representations. We first construct a multi-relational graph, according to the practical task, to reflect the heterogeneity of nodes, edges, attributes, and labels. To avoid the embedding over-assimilation among different types of nodes, we employ a label-aware neural similarity measure to ascertain the most similar neighbors based on node attributes. A reinforced relation-aware neighbor selection mechanism is developed to choose the most similar neighbors of a targeting node within a relation before aggregating all neighborhood information from different relations to obtain the eventual node embedding. Particularly, to improve the efficiency of neighbor selecting, we propose a new recursive and scalable reinforcement learning framework with estimable depth and width for different scales of multi-relational graphs. RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation via the filtering threshold mechanism. Comprehensive experiments on real-world graph data and practical tasks demonstrate the advancements of effectiveness, efficiency, and the model explainability, as opposed to other comparative GNN models.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-18
Author(s):  
Chen Chen ◽  
Lei Liu ◽  
Shaohua Wan ◽  
Xiaozhe Hui ◽  
Qingqi Pei

As a key use case of Industry 4.0 and the Smart City, the Internet of Vehicles (IoV) provides an efficient way for city managers to regulate the traffic flow, improve the commuting performance, reduce the transportation facility cost, alleviate the traffic jam, and so on. In fact, the significant development of Internet of Vehicles has boosted the emergence of a variety of Industry 4.0 applications, e.g., smart logistics, intelligent transforation, and autonomous driving. The prerequisite of deploying these applications is the design of efficient data dissemination schemes by which the interactive information could be effectively exchanged. However, in Internet of Vehicles, an efficient data scheme should adapt to the high node movement and frequent network changing. To achieve the objective, the ability to predict short-term traffic is crucial for making optimal policy in advance. In this article, we propose a novel data dissemination scheme by exploring short-term traffic prediction for Industry 4.0 applications enabled in Internet of Vehicles. First, we present a three-tier network architecture with the aim to simply network management and reduce communication overheads. To capture dynamic network changing, a deep learning network is employed by the controller in this architecture to predict short-term traffic with the availability of enormous traffic data. Based on the traffic prediction, each road segment can be assigned a weight through the built two-dimensional delay model, enabling the controller to make routing decisions in advance. With the global weight information, the controller leverages the ant colony optimization algorithm to find the optimal routing path with minimum delay. Extensive simulations are carried out to demonstrate the accuracy of the traffic prediction model and the superiority of the proposed data dissemination scheme for Industry 4.0 applications.


2022 ◽  
Vol 41 (1) ◽  
pp. 1-21
Author(s):  
Chems-Eddine Himeur ◽  
Thibault Lejemble ◽  
Thomas Pellegrini ◽  
Mathias Paulin ◽  
Loic Barthe ◽  
...  

In recent years, Convolutional Neural Networks (CNN) have proven to be efficient analysis tools for processing point clouds, e.g., for reconstruction, segmentation, and classification. In this article, we focus on the classification of edges in point clouds, where both edges and their surrounding are described. We propose a new parameterization adding to each point a set of differential information on its surrounding shape reconstructed at different scales. These parameters, stored in a Scale-Space Matrix (SSM) , provide a well-suited information from which an adequate neural network can learn the description of edges and use it to efficiently detect them in acquired point clouds. After successfully applying a multi-scale CNN on SSMs for the efficient classification of edges and their neighborhood, we propose a new lightweight neural network architecture outperforming the CNN in learning time, processing time, and classification capabilities. Our architecture is compact, requires small learning sets, is very fast to train, and classifies millions of points in seconds.


2022 ◽  
Vol 18 (2) ◽  
pp. 1-23
Author(s):  
Suraj Mishra ◽  
Danny Z. Chen ◽  
X. Sharon Hu

Compression is a standard procedure for making convolutional neural networks (CNNs) adhere to some specific computing resource constraints. However, searching for a compressed architecture typically involves a series of time-consuming training/validation experiments to determine a good compromise between network size and performance accuracy. To address this, we propose an image complexity-guided network compression technique for biomedical image segmentation. Given any resource constraints, our framework utilizes data complexity and network architecture to quickly estimate a compressed model which does not require network training. Specifically, we map the dataset complexity to the target network accuracy degradation caused by compression. Such mapping enables us to predict the final accuracy for different network sizes, based on the computed dataset complexity. Thus, one may choose a solution that meets both the network size and segmentation accuracy requirements. Finally, the mapping is used to determine the convolutional layer-wise multiplicative factor for generating a compressed network. We conduct experiments using 5 datasets, employing 3 commonly-used CNN architectures for biomedical image segmentation as representative networks. Our proposed framework is shown to be effective for generating compressed segmentation networks, retaining up to ≈95% of the full-sized network segmentation accuracy, and at the same time, utilizing ≈32x fewer network trainable weights (average reduction) of the full-sized networks.


Sign in / Sign up

Export Citation Format

Share Document