scholarly journals Robust 3D Indoor Positioning System Based on Radio Map Using Bayesian Network

Author(s):  
Abdulraqeb Alhammadi ◽  
Saddam Alraih ◽  
Fazirulhisyam Hashim ◽  
Mohd. Fadlee A. Rasid
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhuang Wang ◽  
Liye Zhang ◽  
Qun Kong ◽  
Kangtao Wang

With the development of information technology, indoor positioning technology has been rapidly evolving. Due to the advantages of high positioning accuracy, low cost, and wide coverage simultaneously, received signal strength- (RSS-) based WLAN indoor positioning technology has become one of the mainstream technologies. A radio map is the basis for the realization of the WLAN positioning system. However, by reasons of the huge workload of RSS collection, the instability of wireless signal strength, and the disappearance of signals caused by the occlusion of people and objects, the construction of a radio map is time-consuming and inefficient. In order to rapidly deploy the WLAN indoor positioning system, an improved low-rank matrix completion method is proposed to construct the radio map. Firstly, we evenly arrange a small number of reference points (RP) in the positioning area and collect RSS data on the RP to construct the radio map. Then, the low-rank matrix completion method is used to fill a small amount of data in the radio map into a complete database. The Frobenius parameter (F-parameter) is introduced into the traditional low-rank matrix completion model to control the instability of the model solution when filling the data. To solve the noise problem caused by environment and equipment, a low-rank matrix recovery algorithm is used to eliminate noise. The experimental results show that the improved algorithm achieves the expected goal.


Sign in / Sign up

Export Citation Format

Share Document