reduction method
Recently Published Documents


TOTAL DOCUMENTS

4609
(FIVE YEARS 1070)

H-INDEX

75
(FIVE YEARS 12)

2022 ◽  
Vol 253 ◽  
pp. 113740
Author(s):  
Isabel González-de-León ◽  
Itsaso Arrayago ◽  
Esther Real ◽  
Enrique Mirambell

Geophysics ◽  
2022 ◽  
pp. 1-85
Author(s):  
Peng Lin ◽  
Suping Peng ◽  
Xiaoqin Cui ◽  
Wenfeng Du ◽  
Chuangjian Li

Seismic diffractions encoding subsurface small-scale geologic structures have great potential for high-resolution imaging of subwavelength information. Diffraction separation from the dominant reflected wavefields still plays a vital role because of the weak energy characteristics of the diffractions. Traditional rank-reduction methods based on the low-rank assumption of reflection events have been commonly used for diffraction separation. However, these methods using truncated singular-value decomposition (TSVD) suffer from the problem of reflection-rank selection by singular-value spectrum analysis, especially for complicated seismic data. In addition, the separation problem for the tangent wavefields of reflections and diffractions is challenging. To alleviate these limitations, we propose an effective diffraction separation strategy using an improved optimal rank-reduction method to remove the dependence on the reflection rank and improve the quality of separation results. The improved rank-reduction method adaptively determines the optimal singular values from the input signals by directly solving an optimization problem that minimizes the Frobenius-norm difference between the estimated and exact reflections instead of the TSVD operation. This improved method can effectively overcome the problem of reflection-rank estimation in the global and local rank-reduction methods and adjusts to the diversity and complexity of seismic data. The adaptive data-driven algorithms show good performance in terms of the trade-off between high-quality diffraction separation and reflection suppression for the optimal rank-reduction operation. Applications of the proposed strategy to synthetic and field examples demonstrate the superiority of diffraction separation in detecting and revealing subsurface small-scale geologic discontinuities and inhomogeneities.


2022 ◽  
Author(s):  
Katarzyna Gas ◽  
Maciej Sawicki

Steadily growing interest in magnetic characterization of organic compounds for therapeutic purposes or of other irregularly shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in the single milligram range as they are outweighed by the capsules and are subject to large alignment errors. We present here a completely new experimental methodology that permits 30-fold in situ reduction of the signal of capsules by substantially restoring the symmetry of the sample holder that is otherwise broken by the presence of the capsule. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as approximately a 1 mg object, effectively opening the window for precise magnetometry of single milligram specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers; however, it can be easily incorporated in any magnetometer that can accommodate straw sample holders (i.e., the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating the need for elaborate raw data manipulations.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 495
Author(s):  
Katarzyna Gas ◽  
Maciej Sawicki

Steadily growing interest in magnetic characterization of organic compounds for therapeutic purposes or of other irregularly shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in the single milligram range as they are outweighed by the capsules and are subject to large alignment errors. We present here a completely new experimental methodology that permits 30-fold in situ reduction of the signal of capsules by substantially restoring the symmetry of the sample holder that is otherwise broken by the presence of the capsule. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as approximately a 1 mg object, effectively opening the window for precise magnetometry of single milligram specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers; however, it can be easily incorporated in any magnetometer that can accommodate straw sample holders (i.e., the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating the need for elaborate raw data manipulations.


Author(s):  
Jian-guo Wang ◽  
Qiang Zhou ◽  
Zijiang Zhao ◽  
Zihao Yao ◽  
Zhongzhe Wei ◽  
...  

Modulation of the metal-support interaction plays a key role in many important chemical reactions. Here, by adjusting the reduction method of the catalyst and introducing oxygen vacancies in TiO2 to...


Sign in / Sign up

Export Citation Format

Share Document