Seismic ground‐roll noise attenuation using deep learning

2020 ◽  
Vol 68 (7) ◽  
pp. 2064-2077
Author(s):  
Harpreet Kaur ◽  
Sergey Fomel ◽  
Nam Pham
Author(s):  
Haishan Li ◽  
Wuyang Yang ◽  
Xueshan Yong

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. V333-V350 ◽  
Author(s):  
Siwei Yu ◽  
Jianwei Ma ◽  
Wenlong Wang

Compared with traditional seismic noise attenuation algorithms that depend on signal models and their corresponding prior assumptions, removing noise with a deep neural network is trained based on a large training set in which the inputs are the raw data sets and the corresponding outputs are the desired clean data. After the completion of training, the deep-learning (DL) method achieves adaptive denoising with no requirements of (1) accurate modelings of the signal and noise or (2) optimal parameters tuning. We call this intelligent denoising. We have used a convolutional neural network (CNN) as the basic tool for DL. In random and linear noise attenuation, the training set is generated with artificially added noise. In the multiple attenuation step, the training set is generated with the acoustic wave equation. The stochastic gradient descent is used to solve the optimal parameters for the CNN. The runtime of DL on a graphics processing unit for denoising has the same order as the [Formula: see text]-[Formula: see text] deconvolution method. Synthetic and field results indicate the potential applications of DL in automatic attenuation of random noise (with unknown variance), linear noise, and multiples.


2016 ◽  
Author(s):  
Ahmed Zegadi ◽  
Khalil-Kheir Eddine Zegadi ◽  
Leila Naili Douaouda

2020 ◽  
Author(s):  
Dawei Liu ◽  
Wenchao Chen ◽  
Mauricio D. Sacchi ◽  
Hongxu Wang
Keyword(s):  

Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. V69-V84 ◽  
Author(s):  
Weilin Huang ◽  
Runqiu Wang ◽  
Yimin Yuan ◽  
Shuwei Gan ◽  
Yangkang Chen

Multichannel singular spectrum analysis (MSSA) is an effective algorithm for random noise attenuation; however, it cannot be used to suppress coherent noise. This limitation results from the fact that the conventional MSSA method cannot distinguish between useful signals and coherent noise in the singular spectrum. We have developed a randomization operator to disperse the energy of the coherent noise in the time-space domain. Furthermore, we have developed a novel algorithm for the extraction of useful signals, i.e., for simultaneous random and coherent noise attenuation, by introducing a randomization operator into the conventional MSSA algorithm. In this method, which we call randomized-order MSSA, the traces along the trajectory of each signal component are randomly rearranged. Two ways to extract the trajectories of different signal components are investigated. The first is based on picking the extrema of the upper envelopes, a method that is also constrained by local and global gradients. The second is based on dip scanning in local processing windows, also known as the Radon method. The proposed algorithm can be applied in 2D and 3D data sets to extract different coherent signal components or to attenuate ground roll and multiples. Different synthetic and field data examples demonstrate the successful performance of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yu Sang ◽  
Jinguang Sun ◽  
Dacheng Gao ◽  
Hao Wu

Convolutional neural network- (CNN-) based deep learning (DL) architectures have achieved great success in many fields such as remote sensing, medical image processing, and computer vision. Recently, CNN-based models have also been attempted to solve geophysical problems. This paper presents a noise attenuation method of seismic data via a novel deep learning (DL) architecture, namely, deep multiscale fusion network (MSFN). Firstly, we integrate multiscale fusion (MSF) block to adaptively exploit local signal features at different scales from seismic data. And then, a series of stacked MSF blocks are formed into MSFN, which can restore the noisy seismic data effectively and preserve more useful signal information. Furthermore, a comparative study of our method and other leading edge ones is conducted by using synthetic seismic records and the SEG/EAGE salt and overthrust models. The results qualitatively and quantitatively show the capability of our method of achieving higher peak signal-to-noise ratios (PSNRs) while preserving much more useful information, comparing with other methods. Finally, our method is utilized in the real seismic data processing, obtaining satisfactory results.


2015 ◽  
Vol 12 (11) ◽  
pp. 2316-2320 ◽  
Author(s):  
Yangkang Chen ◽  
Shebao Jiao ◽  
Jianwei Ma ◽  
Hanming Chen ◽  
Yatong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document