Medical Image
Recently Published Documents


TOTAL DOCUMENTS

9090
(FIVE YEARS 3986)

H-INDEX

100
(FIVE YEARS 44)

2022 ◽  
Vol 73 ◽  
pp. 103444
Author(s):  
Samaneh Abbasi ◽  
Meysam Tavakoli ◽  
Hamid Reza Boveiri ◽  
Mohammad Amin Mosleh Shirazi ◽  
Raouf Khayami ◽  
...  

2022 ◽  
Vol 54 (8) ◽  
pp. 1-32
Author(s):  
Jianguo Chen ◽  
Kenli Li ◽  
Zhaolei Zhang ◽  
Keqin Li ◽  
Philip S. Yu

The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak. Most governments, enterprises, and scientific research institutions are participating in the COVID-19 struggle to curb the spread of the pandemic. As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic. In this survey, we investigate the main scope and contributions of AI in combating COVID-19 from the aspects of disease detection and diagnosis, virology and pathogenesis, drug and vaccine development, and epidemic and transmission prediction. In addition, we summarize the available data and resources that can be used for AI-based COVID-19 research. Finally, the main challenges and potential directions of AI in fighting against COVID-19 are discussed. Currently, AI mainly focuses on medical image inspection, genomics, drug development, and transmission prediction, and thus AI still has great potential in this field. This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19 with the goal of inspiring researchers to continue to maximize the advantages of AI and big data to fight COVID-19.


Author(s):  
Nukapeyyi Tanuja

Abstract: Sparse representation(SR) model named convolutional sparsity based morphological component analysis is introduced for pixel-level medical image fusion. The CS-MCA model can achieve multicomponent and global SRs of source images, by integrating MCA and convolutional sparse representation(CSR) into a unified optimization framework. In the existing method, the CSRs of its gradient and texture components are obtained by the CSMCA model using pre-learned dictionaries. Then for each image component, sparse coefficients of all the source images are merged and then fused component is reconstructed using the corresponding dictionary. In the extension mechanism, we are using deep learning based pyramid decomposition. Now a days deep learning is a very demanding technology. Deep learning is used for image classification, object detection, image segmentation, image restoration. Keywords: CNN, CT, MRI, MCA, CS-MCA.


2022 ◽  
pp. 153575972110686
Author(s):  
Fernando Cendes ◽  
Carrie R. McDonald

Artificial intelligence (AI) is increasingly used in medical image analysis and has accelerated scientific discoveries across fields of medicine. In this review, we highlight how AI has been applied to neuroimaging in patients with epilepsy to enhance classification of clinical diagnosis, prediction of treatment outcomes, and the understanding of cognitive comorbidities. We outline the strengths and shortcomings of current AI research and the need for future studies using large datasets that test the reproducibility and generalizability of current findings, as well as studies that test the clinical utility of AI approaches.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Panjiang Ma ◽  
Qiang Li ◽  
Jianbin Li

During the last two decades, as computer technology has matured and business scenarios have diversified, the scale of application of computer systems in various industries has continued to expand, resulting in a huge increase in industry data. As for the medical industry, huge unstructured data has been accumulated, so exploring how to use medical image data more effectively to efficiently complete diagnosis has an important practical impact. For a long time, China has been striving to promote the process of medical informatization, and the combination of big data and artificial intelligence and other advanced technologies in the medical field has become a hot industry and a new development trend. This paper focuses on cardiovascular diseases and uses relevant deep learning methods to realize automatic analysis and diagnosis of medical images and verify the feasibility of AI-assisted medical treatment. We have tried to achieve a complete diagnosis of cardiovascular medical imaging and localize the vulnerable lesion area. (1) We tested the classical object based on a convolutional neural network and experiment, explored the region segmentation algorithm, and showed its application scenarios in the field of medical imaging. (2) According to the data and task characteristics, we built a network model containing classification nodes and regression nodes. After the multitask joint drill, the effect of diagnosis and detection was also enhanced. In this paper, a weighted loss function mechanism is used to improve the imbalance of data between classes in medical image analysis, and the effect of the model is enhanced. (3) In the actual medical process, many medical images have the label information of high-level categories but lack the label information of low-level lesions. The proposed system exposes the possibility of lesion localization under weakly supervised conditions by taking cardiovascular imaging data to resolve these issues. Experimental results have verified that the proposed deep learning-enabled model has the capacity to resolve the aforementioned issues with minimum possible changes in the underlined infrastructure.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jayaraman J. Thiagarajan ◽  
Kowshik Thopalli ◽  
Deepta Rajan ◽  
Pavan Turaga

AbstractThe rapid adoption of artificial intelligence methods in healthcare is coupled with the critical need for techniques to rigorously introspect models and thereby ensure that they behave reliably. This has led to the design of explainable AI techniques that uncover the relationships between discernible data signatures and model predictions. In this context, counterfactual explanations that synthesize small, interpretable changes to a given query while producing desired changes in model predictions have become popular. This under-constrained, inverse problem is vulnerable to introducing irrelevant feature manipulations, particularly when the model’s predictions are not well-calibrated. Hence, in this paper, we propose the TraCE (training calibration-based explainers) technique, which utilizes a novel uncertainty-based interval calibration strategy for reliably synthesizing counterfactuals. Given the wide-spread adoption of machine-learned solutions in radiology, our study focuses on deep models used for identifying anomalies in chest X-ray images. Using rigorous empirical studies, we demonstrate the superiority of TraCE explanations over several state-of-the-art baseline approaches, in terms of several widely adopted evaluation metrics. Our findings show that TraCE can be used to obtain a holistic understanding of deep models by enabling progressive exploration of decision boundaries, to detect shortcuts, and to infer relationships between patient attributes and disease severity.


2022 ◽  
Author(s):  
Jakob Nikolas Kather ◽  
Narmin Ghaffari Laleh ◽  
Sebastian Foersch ◽  
Daniel Truhn

The text-guided diffusion model GLIDE (Guided Language to Image Diffusion for Generation and Editing) is the state of the art in text-to-image generative artificial intelligence (AI). GLIDE has rich representations, but medical applications of this model have not been systematically explored. If GLIDE had useful medical knowledge, it could be used for medical image analysis tasks, a domain in which AI systems are still highly engineered towards a single use-case. Here we show that the publicly available GLIDE model has reasonably strong representations of key topics in cancer research and oncology, in particular the general style of histopathology images and multiple facets of diseases, pathological processes and laboratory assays. However, GLIDE seems to lack useful representations of the style and content of radiology data. Our findings demonstrate that domain-agnostic generative AI models can learn relevant medical concepts without explicit training. Thus, GLIDE and similar models might be useful for medical image processing tasks in the future - particularly with additional domain-specific fine-tuning.


Sign in / Sign up

Export Citation Format

Share Document