Deep learning for denoising

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. V333-V350 ◽  
Author(s):  
Siwei Yu ◽  
Jianwei Ma ◽  
Wenlong Wang

Compared with traditional seismic noise attenuation algorithms that depend on signal models and their corresponding prior assumptions, removing noise with a deep neural network is trained based on a large training set in which the inputs are the raw data sets and the corresponding outputs are the desired clean data. After the completion of training, the deep-learning (DL) method achieves adaptive denoising with no requirements of (1) accurate modelings of the signal and noise or (2) optimal parameters tuning. We call this intelligent denoising. We have used a convolutional neural network (CNN) as the basic tool for DL. In random and linear noise attenuation, the training set is generated with artificially added noise. In the multiple attenuation step, the training set is generated with the acoustic wave equation. The stochastic gradient descent is used to solve the optimal parameters for the CNN. The runtime of DL on a graphics processing unit for denoising has the same order as the [Formula: see text]-[Formula: see text] deconvolution method. Synthetic and field results indicate the potential applications of DL in automatic attenuation of random noise (with unknown variance), linear noise, and multiples.

2019 ◽  
Vol 45 (2) ◽  
pp. 227-248 ◽  
Author(s):  
Bo Pang ◽  
Erik Nijkamp ◽  
Ying Nian Wu

This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models also has tremendous potential to promote data analysis and modeling for various problems in educational and behavioral sciences given its flexibility and scalability. We give the reader an overview of the basics of neural network models such as the multilayer perceptron, the convolutional neural network, and stochastic gradient descent, the most commonly used optimization method for neural network models. However, the implementation of these models and optimization algorithms is time-consuming and error-prone. Fortunately, TensorFlow greatly eases and accelerates the research and application of neural network models. We review several core concepts of TensorFlow such as graph construction functions, graph execution tools, and TensorFlow’s visualization tool, TensorBoard. Then, we apply these concepts to build and train a convolutional neural network model to classify handwritten digits. This review is concluded by a comparison of low- and high-level application programming interfaces and a discussion of graphical processing unit support, distributed training, and probabilistic modeling with TensorFlow Probability library.


2019 ◽  
Vol 2 (1) ◽  
pp. 41
Author(s):  
Heri Darmanto

Hasil sensus kehidupan laut pada tahun 2013 di seluruh dunia terdapat lebih dari 23.000 spesies dan masih banyak sekali spesies ikan yang belum diidentifikasi. Otolith merupakan organ yang sangat penting di belakang telinga ikan, karena melalui otolith ini dapat diketahui jenis ikan, pertumbuhan dan lingkungan, serta sejarah kehidupannya,  misalnya, umur, reproduksi, dan migrasi. Dengan semakin  canggihnya komputer dan pengolahan di bidang citra,  diharapkan  kemampuan  mengidentifikasi jenis  ikan  yang dimiliki oleh manusia bisa diadopsi  dan diterapkan pada perangkat komputer. Deep Learning saat ini semakin berkembang memanfaatkan sumber daya perangkat keras yang semakin canggih termasuk penggunaan GPU (Graphical Processing Unit) untuk perhitungan proses komputasi dengan akurasi yang lebih baik dan proses yang lebih cepat. Pada penelitian ini metode yang diusulkan, untuk keperluan klasifikasi ikan menggunakan metode Convolutional Neural Network dengan teknik Transfer Learning dari model Alexnet dan optimasi Momentum Stochastic Gradient Descent. Hasil eksperimen diperoleh akurasi sebesar 95.4% lebih tinggi dibanding metode Discriminant Analysis yang memiliki akurasi sebesar 92%.


Author(s):  
A John. ◽  
D. Praveen Dominic ◽  
M. Adimoolam ◽  
N. M. Balamurugan

Background:: Predictive analytics has a multiplicity of statistical schemes from predictive modelling, data mining, machine learning. It scrutinizes present and chronological data to make predictions about expectations or if not unexplained measures. Most predictive models are used for business analytics to overcome loses and profit gaining. Predictive analytics is used to exploit the pattern in old and historical data. Objective: People used to follow some strategies for predicting stock value to invest in the more profit-gaining stocks and those strategies to search the stock market prices which are incorporated in some intelligent methods and tools. Such strategies will increase the investor’s profits and also minimize their risks. So prediction plays a vital role in stock market gaining and is also a very intricate and challenging process. Method: The proposed optimized strategies are the Deep Neural Network with Stochastic Gradient for stock prediction. The Neural Network is trained using Back-propagation neural networks algorithm and stochastic gradient descent algorithm as optimal strategies. Results: The experiment is conducted for stock market price prediction using python language with the visual package. In this experiment RELIANCE.NS, TATAMOTORS.NS, and TATAGLOBAL.NS dataset are taken as input dataset and it is downloaded from National Stock Exchange site. The artificial neural network component including Deep Learning model is most effective for more than 100,000 data points to train this model. This proposed model is developed on daily prices of stock market price to understand how to build model with better performance than existing national exchange method.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4582
Author(s):  
Changjie Cai ◽  
Tomoki Nishimura ◽  
Jooyeon Hwang ◽  
Xiao-Ming Hu ◽  
Akio Kuroda

Fluorescent probes can be used to detect various types of asbestos (serpentine and amphibole groups); however, the fiber counting using our previously developed software was not accurate for samples with low fiber concentration. Machine learning-based techniques (e.g., deep learning) for image analysis, particularly Convolutional Neural Networks (CNN), have been widely applied to many areas. The objectives of this study were to (1) create a database of a wide-range asbestos concentration (0–50 fibers/liter) fluorescence microscopy (FM) images in the laboratory; and (2) determine the applicability of the state-of-the-art object detection CNN model, YOLOv4, to accurately detect asbestos. We captured the fluorescence microscopy images containing asbestos and labeled the individual asbestos in the images. We trained the YOLOv4 model with the labeled images using one GTX 1660 Ti Graphics Processing Unit (GPU). Our results demonstrated the exceptional capacity of the YOLOv4 model to learn the fluorescent asbestos morphologies. The mean average precision at a threshold of 0.5 ([email protected]) was 96.1% ± 0.4%, using the National Institute for Occupational Safety and Health (NIOSH) fiber counting Method 7400 as a reference method. Compared to our previous counting software (Intec/HU), the YOLOv4 achieved higher accuracy (0.997 vs. 0.979), particularly much higher precision (0.898 vs. 0.418), recall (0.898 vs. 0.780) and F-1 score (0.898 vs. 0.544). In addition, the YOLOv4 performed much better for low fiber concentration samples (<15 fibers/liter) compared to Intec/HU. Therefore, the FM method coupled with YOLOv4 is remarkable in detecting asbestos fibers and differentiating them from other non-asbestos particles.


Author(s):  
Elena Morotti ◽  
Davide Evangelista ◽  
Elena Loli Piccolomini

Deep Learning is developing interesting tools which are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green-AI literature, we here propose a shallow neural network to perform an efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results obtained on images from the training set and on unseen images, using both the non-expensive network and the widely used very deep ResUNet show that the proposed network computes images of comparable or higher quality in about one fourth of time.


2018 ◽  
Vol 10 (12) ◽  
pp. 1886 ◽  
Author(s):  
Xiangyu Liu ◽  
Yichen Tian ◽  
Chao Yuan ◽  
Feifei Zhang ◽  
Guang Yang

Opium poppies are a major source of traditional drugs, which are not only harmful to physical and mental health, but also threaten the economy and society. Monitoring poppy cultivation in key regions through remote sensing is therefore a crucial task; the location coordinates of poppy parcels represent particularly important information for their eradication by local governments. We propose a new methodology based on deep learning target detection to identify the location of poppy parcels and map their spatial distribution. We first make six training datasets with different band combinations and slide window sizes using two ZiYuan3 (ZY3) remote sensing images and separately train the single shot multibox detector (SSD) model. Then, we choose the best model and test its performance using 225 km2 verification images from Lao People’s Democratic Republic (Lao PDR), which exhibits a precision of 95% for a recall of 85%. The speed of our method is 4.5 km2/s on 1080TI Graphics Processing Unit (GPU). This study is the first attempt to monitor opium poppies with the deep learning method and achieve a high recognition rate. Our method does not require manual feature extraction and provides an alternative way to rapidly obtain the exact location coordinates of opium poppy cultivation patches.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Tee-Ann Teo

<p><strong>Abstract.</strong> Deep Learning is a kind of Machine Learning technology which utilizing the deep neural network to learn a promising model from a large training data set. Convolutional Neural Network (CNN) has been successfully applied in image segmentation and classification with high accuracy results. The CNN applies multiple kernels (also called filters) to extract image features via image convolution. It is able to determine multiscale features through the multiple layers of convolution and pooling processes. The variety of training data plays an important role to determine a reliable CNN model. The benchmarking training data for road mark extraction is mainly focused on close-range imagery because it is easier to obtain a close-range image rather than an airborne image. For example, KITTI Vision Benchmark Suite. This study aims to transfer the road mark training data from mobile lidar system to aerial orthoimage in Fully Convolutional Networks (FCN). The transformation of the training data from ground-based system to airborne system may reduce the effort of producing a large training data set.</p><p>This study uses FCN technology and aerial orthoimage to localize road marks on the road regions. The road regions are first extracted from 2-D large-scale vector map. The input aerial orthoimage is 10&amp;thinsp;cm spatial resolution and the non-road regions are masked out before the road mark localization. The training data are road mark’s polygons, which are originally digitized from ground-based mobile lidar and prepared for the road mark extraction using mobile mapping system. This study reuses these training data and applies them for the road mark extraction using aerial orthoimage. The digitized training road marks are then transformed to road polygon based on mapping coordinates. As the detail of ground-based lidar is much better than the airborne system, the partially occulted parking lot in aerial orthoimage can also be obtained from the ground-based system. The labels (also called annotations) for FCN include road region, non-regions and road mark. The size of a training batch is 500&amp;thinsp;pixel by 500&amp;thinsp;pixel (50&amp;thinsp;m by 50&amp;thinsp;m on the ground), and the total number of training batches for training is 75 batches. After the FCN training stage, an independent aerial orthoimage (Figure 1a) is applied to predict the road marks. The results of FCN provide initial regions for road marks (Figure 1b). Usually, road marks show higher reflectance than road asphalts. Therefore, this study uses this characteristic to refine the road marks (Figure 1c) by a binary classification inside the initial road mark’s region.</p><p>To compare the automatically extracted road marks (Figure 1c) and manually digitized road marks (Figure 1d), most road marks can be extracted using the training set from ground-based system. This study also selects an area of 600&amp;thinsp;m&amp;thinsp;&amp;times;&amp;thinsp;200&amp;thinsp;m in quantitative analysis. Among the 371 reference road marks, 332 can be extracted from proposed scheme, and the completeness reached 89%. The preliminary experiment demonstrated that most road marks can be successfully extracted by the proposed scheme. Therefore, the training data from the ground-based mapping system can be utilized in airborne orthoimage in similar spatial resolution.</p>


Sign in / Sign up

Export Citation Format

Share Document