Differential Modulation of the Elongation-Factor-G GTPase Activity by tRNA Bound to the Ribosomal A-Site or P-Site

1982 ◽  
Vol 125 (2) ◽  
pp. 415-421 ◽  
Author(s):  
Gianni CHINALI ◽  
Andrea PARMEGGIANI
2019 ◽  
Vol 5 (12) ◽  
pp. eaax8030 ◽  
Author(s):  
Bee-Zen Peng ◽  
Lars V. Bock ◽  
Riccardo Belardinelli ◽  
Frank Peske ◽  
Helmut Grubmüller ◽  
...  

During translation, the ribosome moves along the mRNA one codon at a time with the help of elongation factor G (EF-G). Spontaneous changes in the translational reading frame are extremely rare, yet how the precise triplet-wise step is maintained is not clear. Here, we show that the ribosome is prone to spontaneous frameshifting on mRNA slippery sequences, whereas EF-G restricts frameshifting. EF-G helps to maintain the mRNA reading frame by guiding the A-site transfer RNA during translocation due to specific interactions with the tip of EF-G domain 4. Furthermore, EF-G accelerates ribosome rearrangements that restore the ribosome’s control over the codon-anticodon interaction at the end of the movement. Our data explain how the mRNA reading frame is maintained during translation.


2000 ◽  
Vol 6 (2) ◽  
pp. 501-505 ◽  
Author(s):  
Frank Peske ◽  
Natalia B. Matassova ◽  
Andreas Savelsbergh ◽  
Marina V. Rodnina ◽  
Wolfgang Wintermeyer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Demo ◽  
Howard B. Gamper ◽  
Anna B. Loveland ◽  
Isao Masuda ◽  
Christine E. Carbone ◽  
...  

AbstractFrameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.


Sign in / Sign up

Export Citation Format

Share Document