Nature Communications
Latest Publications


TOTAL DOCUMENTS

42660
(FIVE YEARS 29787)

H-INDEX

366
(FIVE YEARS 175)

Published By Springer Nature

2041-1723

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Bret Sanders ◽  
Daniel D’Andrea ◽  
Mark O. Collins ◽  
Elliott Rees ◽  
Tom G. J. Steward ◽  
...  

AbstractCoordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2−/− lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Bo Li ◽  
Lan Wang ◽  
Xiangxiang Chen ◽  
Xin Chu ◽  
Hong Tang ◽  
...  

AbstractPeptide modification methods that do not rely on the cysteine residue are underdeveloped, and their development could greatly expand the current toolbox for peptide chemistry. During the course of preliminary investigations into the classical ortho-phthalaldehyde (OPA)-amine-thiol condensation reaction, we found that in the absence of thiol, OPA readily condenses with two primary alkyl amines to form a class of underexplored isoindolin-1-imine compounds under mild aqueous conditions. From the intramolecular version of this OPA-2amines reaction, an efficient and selective methodology using mild reaction conditions has been developed for stapling unprotected peptides via crosslinking of two amino groups in both an end-to-side and side-to-side fashion. The stapling method is superfast and broadly applicable for various peptide substrates with the reacting amino groups separated by a wide range of different amino acid units. The macrocyclization reactions of selected substrates are completed within 10 seconds at 5 mM concentration and within 2 minutes at 50 μM concentration. Importantly, the resulting cyclized peptides with an isoindolinimine linkage can be extended in a one-pot sequential addition manner with several different electron-deficient π electrophiles, thereby generating more complex structures.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kyusung Hwang ◽  
Ara Go ◽  
Ji Heon Seong ◽  
Takasada Shibauchi ◽  
Eun-Gook Moon

AbstractQuantum spin liquids realize massive entanglement and fractional quasiparticles from localized spins, proposed as an avenue for quantum science and technology. In particular, topological quantum computations are suggested in the non-abelian phase of Kitaev quantum spin liquid with Majorana fermions, and detection of Majorana fermions is one of the most outstanding problems in modern condensed matter physics. Here, we propose a concrete way to identify the non-abelian Kitaev quantum spin liquid by magnetic field angle dependence. Topologically protected critical lines exist on a plane of magnetic field angles, and their shapes are determined by microscopic spin interactions. A chirality operator plays a key role in demonstrating microscopic dependences of the critical lines. We also show that the chirality operator can be used to evaluate topological properties of the non-abelian Kitaev quantum spin liquid without relying on Majorana fermion descriptions. Experimental criteria for the non-abelian spin liquid state are provided for future experiments.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Peter Hatton ◽  
Michael J. Watts ◽  
Ali Abbas ◽  
John M. Walls ◽  
Roger Smith ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Li-Ping Xu ◽  
Shaoqun Qian ◽  
Zhe Zhuang ◽  
Jin-Quan Yu ◽  
Djamaladdin G. Musaev

AbstractThe search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2 oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+ cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Quan-Hui Liu ◽  
Juanjuan Zhang ◽  
Cheng Peng ◽  
Maria Litvinova ◽  
Shudong Huang ◽  
...  

AbstractThere are contrasting results concerning the effect of reactive school closure on SARS-CoV-2 transmission. To shed light on this controversy, we developed a data-driven computational model of SARS-CoV-2 transmission. We found that by reactively closing classes based on syndromic surveillance, SARS-CoV-2 infections are reduced by no more than 17.3% (95%CI: 8.0–26.8%), due to the low probability of timely identification of infections in the young population. We thus investigated an alternative triggering mechanism based on repeated screening of students using antigen tests. Depending on the contribution of schools to transmission, this strategy can greatly reduce COVID-19 burden even when school contribution to transmission and immunity in the population is low. Moving forward, the adoption of antigen-based screenings in schools could be instrumental to limit COVID-19 burden while vaccines continue to be rolled out.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongkang Yang ◽  
Haiquan Lu ◽  
Chelsey Chen ◽  
Yajing Lyu ◽  
Robert N. Cole ◽  
...  

AbstractHypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
P. Bouilhol ◽  
B. Debret ◽  
E. C. Inglis ◽  
M. Warembourg ◽  
T. Grocolas ◽  
...  

AbstractSerpentinites are an important sink for both inorganic and organic carbon, and their behavior during subduction is thought to play a fundamental role in the global cycling of carbon. Here we show that fluid-derived veins are preserved within the Zermatt-Saas ultra-high pressure serpentinites providing key evidence for carbonate mobility during serpentinite devolatilisation. We show through the O, C, and Sr isotope analyses of vein minerals and the host serpentinites that about 90% of the meta-serpentinite inorganic carbon is remobilized during slab devolatilisation. In contrast, graphite-like carbonaceous compounds remain trapped within the host rock as inclusions within metamorphic olivine while the bulk elemental and isotope composition of organic carbon remains relatively unchanged during the subduction process. This shows a decoupling behavior of carbon during serpentinite dehydration in subduction zones. This process will therefore facilitate the transfer of inorganic carbon to the mantle wedge and the preferential slab sequestration of organic carbon en route to the deep mantle.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Iris C. ten Have ◽  
Josepha J. G. Kromwijk ◽  
Matteo Monai ◽  
Davide Ferri ◽  
Ellen B. Sterk ◽  
...  

AbstractTransforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C2+ hydrocarbons. The C2+ selectivity increases to 39% (yielding 104 mmol h−1 gcat−1 C2+ hydrocarbons) upon co-feeding CO and CO2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts.


Sign in / Sign up

Export Citation Format

Share Document