Functionally Referential Alarm Calls in Tamarins (Saguinus fuscicollis and Saguinus mystax) - Evidence from Playback Experiments

Ethology ◽  
2006 ◽  
Vol 112 (4) ◽  
pp. 346-354 ◽  
Author(s):  
Janna Kirchhof ◽  
Kurt Hammerschmidt
Behaviour ◽  
2001 ◽  
Vol 138 (10) ◽  
pp. 1287-1302 ◽  
Author(s):  
Aliza Le Roux ◽  
Michael Cherry ◽  
Tim Jackson

AbstractThe function of variation in single call duration and alarm calling bouts was investigated in Brants' whistling rat, Parotomys brantsii, by means of playback experiments and video analyses of the vigilance displayed. Short calls are produced in high-risk situations, and long calls in low-risk encounters, but these calls apparently do not communicate this variance in risk to conspecifics. Both short and long single calls induced heightened vigilance in receivers, but rats did not respond differentially to the two call types, and it was concluded that P.brantsii alarm calls are not functionally referential. Multiple calls maintained a state of increased alertness in receivers for a longer period than single calls, even after the bouts had ended, but long bouts (duration: 64 s) did not lead to longer periods of vigilance than short bouts (29 s). Thus the tonic communication hypothesis is only partially supported by our study.


2005 ◽  
Vol 5 (3) ◽  
pp. 327-344 ◽  
Author(s):  
Marta B. Manser ◽  
Lindsay B. Fletcher

In this study of the functionally referential alarm calls in the meerkats (Suricata suricatta), we tested the hypothesis that the ability to refer to a specific location was an important factor in the evolution of discrete vocalizations. We investigated what information receivers gained about the location of the predator from alarm calls with high stimulus specificity compared to alarm calls with low stimulus specificity. Furthermore, we studied whether visual cues about the localization of the predator may be available from the posture of the caller. We described the general behaviour of the caller, the caller’s posture, and in particular its gaze direction. We then observed receivers responding to the different call types, to determine whether the acoustic structure of the calls was enough for them to respond in the appropriate way, or whether they used additional visual cues from the caller. We tested this with specific manipulation experiments, using three set ups of playback experiments: (1) no caller visible; (2) model guard with specific gaze direction; and (3) live sentinel. Natural observations and experiments confirmed that in high urgency situations the meerkats have enough information from the acoustic structure of the call to respond appropriately. When hearing low urgency calls that are less stimuli specific, meerkats used visual cues as an additional source of information in a few cases. This may indicate that functionally referential calls evolved to denote the location of the predator, rather than the predator type or its velocity of approach. However, when discussing this result in comparison to other functionally referential calls, such as the food associated calls and recruitment calls, this localization hypothesis does not appear to apply to the functionally referential calls in general.


2019 ◽  
Vol 22 (6) ◽  
pp. 1149-1157 ◽  
Author(s):  
Jiangping Yu ◽  
Hailin Lu ◽  
Wei Sun ◽  
Wei Liang ◽  
Haitao Wang ◽  
...  

Abstract Species facing similar selection pressures should recognize heterospecific alarm signals. However, no study has so far examined heterospecific alarm-call recognition in response to parasitism by cuckoos. In this study, we tested whether two sympatric host species of the common cuckoo Cuculus canorus, Oriental reed warbler Acrocephalus orientalis (ORW, main host), and black-browed reed warbler Acrocephalus bistrigiceps (BRW, rare host), could recognize each other’s alarm calls in response to cuckoos. Dummies of common cuckoo (parasite) and Eurasian sparrowhawk Accipiter nisus (predator) were used to induce and record alarm calls of the two warbler species, respectively. In the conspecific alarm-call playback experiments, ORW responded more strongly to cuckoo alarm calls than to sparrowhawk alarm calls, while BRW responded less strongly to cuckoo alarm calls than to sparrowhawk alarm calls. In the heterospecific alarm-call playback experiments, both ORW and BRW responded less strongly to cuckoo alarm calls than sparrowhawk alarm calls. BRW seemed to learn the association between parasite-related alarm calls of the ORW and the cuckoo by observing the process of ORW attacking cuckoos. In contrast, alarm calls of BRW to cuckoos were rarely recorded in most cases. BRW with low parasite pressure still developed recognition of heterospecific parasite-related alarm call. Unintended receivers in the same community should recognize heterospecific alarm calls precisely to extract valuable information.


1999 ◽  
Vol 3 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Daniel T. Blumstein

Many species produce specific alarm vocalizations when they encounter predators. There is considerable interest in the degree to which bird, ground-dwelling sciurid rodent, and primate alarm calls denote the species or type of predator that elicited the vocalization. When there is a tight association between the type or species of predator eliciting an alarm call, and when a played-back alarm call elicits antipredator responses qualitatively similar to those seen when individuals personally encounter a predator, the alarm calls are said to be functionally referential. In this essay I aim to make two simple points about the evolution of functionally referential alarm communication. Firstly, functionally referential communication is likely to be present only when a species produces acoustically distinct alarm vocalizations. Thus, to understand its evolution we must study factors that influence the evolution of alarm call repertoire size. Secondly, and potentially decoupled from the ability to produce acoustically distinctive alarm vocalizations, species must have the perceptual and motor abilities to respond differently to acoustically-distinct alarm vocalizations. Thus, to understand the evolution of functionally referential communication we also must study factors that influence the evolution of context-independent perception. While some factors may select for functionally referential alarm communication, constraints on production or perception may prevent its evolution.


2008 ◽  
Vol 4 (5) ◽  
pp. 472-475 ◽  
Author(s):  
Sarah Papworth ◽  
Anne-Sophie Böse ◽  
Jessica Barker ◽  
Anne Marijke Schel ◽  
Klaus Zuberbühler

Male blue monkeys ( Cercopithecus mitis stuhlmanni ) of Budongo Forest, Uganda, produce two acoustically distinct alarm calls: hacks to crowned eagles ( Stephanoaetus coronatus ) and pyows to leopards ( Panthera pardus ) and a range of other disturbances. In playback experiments, males responded to leopard growls exclusively with a series of pyows and to eagle shrieks predominantly with hacks. Responses to playbacks of these alarm call series matched the responses to the corresponding predators, suggesting that the calls conveyed something about the nature of the threat. When responding to a series of hacks, indicating an eagle, males responded predominately with hacks, but produced significantly more calls if their group members were close to the playback stimulus than far away, regardless of their own position. When responding to a series of pyows, indicating a range of disturbances, males responded with pyows, but call rates were independent of the distance of other group members. The results suggest that males took into account the degree of danger experienced by other group members.


Sign in / Sign up

Export Citation Format

Share Document