A Bioluminescence Method for the Measurement of l-Glutamate: Applications to the Study of Changes in the Release of l-Glutamate from Lateral Geniculate Nucleus and Superior Colliculus After Visual Cortex Ablation in Rats

2006 ◽  
Vol 47 (2) ◽  
pp. 340-349 ◽  
Author(s):  
Viggo M. Fosse ◽  
Jens Kolstad ◽  
Frode Fonnum

Responses to visual stimuli and to electrical stimulation of the optic chiasma were analysed in neurons of the lateral geniculate nucleus, visual cortex and superior colliculus in monocularly deprived cats with different post-deprivation periods. If the cats had both eyes open in their post-deprivation period (1 year) no recovery from the effects of early deprivation was found in the responses of neurones in all 3 visual structures. In cats with a post-deprivation reverse closure we found an increase in the proportion of Y-cells recorded in the early deprived layer of LGN when compared to the Y-cell proportion found in the same layers immediately after the deprived eye was opened. In neurons of the visual cortex and superior colliculus the functional abnormalities remained unaltered. The late closure of the non-deprived eye for up to 3 years did not effect neurons normally activated through that eye. Removal of the non-deprived eye unmasked connections of the deprived eye’s pathway onto neurons in the visual cortex and the superior colliculus. The neurons showed no specificity for the direction of movement or the orientation of visual stimuli. This recovery from deprivation was greater after enucleating the cats at the age of 6 months than at 18 months after birth. In the lateral geniculate nucleus of these cats the proportion of Y-cells in the recorded sample driven by the deprived eye had recovered to the value of normal cats. The difficulties in relating these physiological findings to results from morphological or behavioural studies are discussed.


1996 ◽  
Vol 13 (6) ◽  
pp. 997-1009 ◽  
Author(s):  
G. Leuba ◽  
K. Saini

AbstractThe distribution of neurons and fibers immunoreactive (ir) to the three calcium-binding proteins parvalbumin (PV), calbindin D-28k (CB), and calretinin (CR) was studied in the human lateral geniculate nucleus (LGN), lateral inferior pulvinar, and optic radiation, and related to that in the visual cortex. In the LGN, PV, CR, and CB immunoreactivity was present in all laminae, slightly stronger in the magnocellular than in the parvocellular laminae for CB and CR. PV-ir puncta, representing transversally cut axons, and CR-ir fibers were revealed within the laminae and interlaminar zones, and just beyond the outer border of lamina 6 in the geniculate capsule. In the optic radiation both PV- and CR-immunoreactive neurons, puncta, and fibers were present. CB immunoreactivity was revealed in neurons of all laminae of the lateral geniculate nucleus, including S lamina and interlaminar zones. There were hardly any CB-ir puncta or fibers in the laminae, interlaminar zones, geniculate capsule, or optic radiation. In the lateral inferior pulvinar, immunoreactive neurons for the three calcium-binding proteins were present in smaller number than in the LGN, as well as PV-ir puncta and CR-ir fibers within the nucleus and in the pulvinar capsule. In the white matter underlying area 17, fibers intermingled with a few scattered neurons were stained for both PV and CR, but very rarely for CB. These fibers stopped at the limit between areas 17 and 18. Area 17 showed a dense plexus of PV-ir puncta and neurons in the thalamo-receptive layer IV and CR-ir puncta and neurons both in the superficial layers I-II, IIIC, and in layer VA. Cajal-Retzius CR-ir neurons were present in layer I. CB-ir puncta were almost confined to layer I-III and CB-ir neurons to layer II. Finally the superior colliculus exhibited mostly populations of PV and CR pyramidal-like immunoreactive neurons, mainly in the intermediate tier. These data suggest that in the visual thalamus most calcium-binding protein immunoreactive neurons project to the visual cortex, while in the superior colliculus a smaller immunoreactive population represent projection neurons.


1994 ◽  
Vol 6 (4) ◽  
pp. 615-621 ◽  
Author(s):  
Geoffrey J. Goodhill ◽  
David J. Willshaw

The elastic net (Durbin and Willshaw 1987) can account for the development of both topography and ocular dominance in the mapping from the lateral geniculate nucleus to primary visual cortex (Goodhill and Willshaw 1990). Here it is further shown for this model that (1) the overall pattern of stripes produced is strongly influenced by the shape of the cortex: in particular, stripes with a global order similar to that seen biologically can be produced under appropriate conditions, and (2) the observed changes in stripe width associated with monocular deprivation are reproduced in the model.


Sign in / Sign up

Export Citation Format

Share Document