axon terminals
Recently Published Documents


TOTAL DOCUMENTS

867
(FIVE YEARS 114)

H-INDEX

84
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Takuma Naoi ◽  
Yuki Kagawa ◽  
Kimiko Nagino ◽  
Shinsuke Niwa ◽  
Kumiko Hayashi

In the long axon of a neuron, cargo transport between the cell body and terminal synaptic region are mainly supported by the motor proteins kinesin and dynein, which are nano-sized drivers. Synaptic materials packed as cargos are anterogradely transported to the synaptic region by kinesin, whereas materials accumulated at the axon terminals are returned to the cell body by dynein. Extreme value analysis, typically used for disaster prevention in our society, was applied to analyze the velocity of kinesin and dynein nanosized drivers to disclose their physical properties in living cells.


Neuron ◽  
2021 ◽  
Vol 109 (23) ◽  
pp. 3895-3896
Author(s):  
Akihiro Matsumoto ◽  
Weaam Agbariah ◽  
Stella Solveig Nolte ◽  
Rawan Andrawos ◽  
Hadara Levi ◽  
...  

2021 ◽  
Vol 134 (22) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Chunchu Deng is co-first author on ‘ Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons’, published in Journal of Cell Science. Chunchu is a PhD Student in the lab of Professor Michael Sendtner at the Institute of Clinical Neurobiology, University Hospital Würzburg, Germany, investigating the dynamics of the endoplasmic reticulum and local translation in motoneurons, and their involvement in motoneuron diseases.


2021 ◽  
Author(s):  
Chunchu Deng ◽  
Mehri Moradi ◽  
Sebastian Reinhard ◽  
Changhe Ji ◽  
Sibylle Jablonka ◽  
...  

In neurons, endoplasmic reticulum forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance. However, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high resolution microscopy and live cell imaging to investigate rapid movements of endoplasmic reticulum and ribosomes in axons of cultured motoneurons after stimulation with Brain-derived neurotrophic factor. Our results indicate that the endoplasmic reticulum extends into axonal growth cone filopodia where its integrity and dynamic remodeling are regulated mainly by actin and its motor protein myosin VI. Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with ER in response to extracellular stimuli which describes a novel function of axonal ER in dynamic regulation of local translation.


2021 ◽  
Author(s):  
Chunchu Deng ◽  
Mehri Moradi ◽  
Sebastian Reinhard ◽  
Changhe Ji ◽  
Sibylle Jablonka ◽  
...  

In neurons, endoplasmic reticulum forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance. However, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high resolution microscopy and live cell imaging to investigate rapid movements of endoplasmic reticulum and ribosomes in axons of cultured motoneurons after stimulation with Brain-derived neurotrophic factor. Our results indicate that the endoplasmic reticulum extends into axonal growth cone filopodia where its integrity and dynamic remodeling are regulated mainly by actin and its motor protein myosin VI. Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with ER in response to extracellular stimuli which describes a novel function of axonal ER in dynamic regulation of local translation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hisataka Fujimoto ◽  
Eiji Notsu ◽  
Ryo Yamamoto ◽  
Munenori Ono ◽  
Hiroyuki Hioki ◽  
...  

The medial geniculate body (MGB) is the thalamic center of the auditory lemniscal pathway. The ventral division of MGB (MGV) receives excitatory and inhibitory inputs from the inferior colliculus (IC). MGV is involved in auditory attention by processing descending excitatory and inhibitory inputs from the auditory cortex (AC) and reticular thalamic nucleus (RTN), respectively. However, detailed mechanisms of the integration of different inputs in a single MGV neuron remain unclear. Kv4.2 is one of the isoforms of the Shal-related subfamily of potassium voltage-gated channels that are expressed in MGB. Since potassium channel is important for shaping synaptic current and spike waveforms, subcellular distribution of Kv4.2 is likely important for integration of various inputs. Here, we aimed to examine the detailed distribution of Kv4.2, in MGV neurons to understand its specific role in auditory attention. We found that Kv4.2 mRNA was expressed in most MGV neurons. At the protein level, Kv4.2-immunopositive patches were sparsely distributed in both the dendrites and the soma of neurons. The postsynaptic distribution of Kv4.2 protein was confirmed using electron microscopy (EM). The frequency of contact with Kv4.2-immunopositive puncta was higher in vesicular glutamate transporter 2 (VGluT2)-positive excitatory axon terminals, which are supposed to be extending from the IC, than in VGluT1-immunopositive terminals, which are expected to be originating from the AC. VGluT2-immunopositive terminals were significantly larger than VGluT1-immunopositive terminals. Furthermore, EM showed that the terminals forming asymmetric synapses with Kv4.2-immunopositive MGV dendritic domains were significantly larger than those forming synapses with Kv4.2-negative MGV dendritic domains. In inhibitory axons either from the IC or from the RTN, the frequency of terminals that were in contact with Kv4.2-positive puncta was higher in IC than in RTN. In summary, our study demonstrated that the Kv4.2-immunopositive domains of the MGV dendrites received excitatory and inhibitory ascending auditory inputs preferentially from the IC, and not from the RTN or cortex. Our findings imply that time course of synaptic current and spike waveforms elicited by IC inputs is modified in the Kv4.2 domains.


2021 ◽  
Vol 14 (10) ◽  
pp. 1003
Author(s):  
Michela Ferrucci ◽  
Francesca Biagioni ◽  
Carla L. Busceti ◽  
Chiara Vidoni ◽  
Roberta Castino ◽  
...  

Methamphetamine (METH) is a widely abused psychostimulant and a stress-inducing compound, which leads to neurotoxicity for nigrostriatal dopamine (DA) terminals in rodents and primates including humans. In vitro studies indicate that autophagy is a strong modulator of METH toxicity. In detail, suppressing autophagy increases METH toxicity, while stimulating autophagy prevents METH-induced toxicity in cell cultures. In the present study, the role of autophagy was investigated in vivo. In the whole brain, METH alone destroys meso-striatal DA axon terminals, while fairly sparing DA cell bodies within substantia nigra pars compacta (SNpc). No damage to either cell bodies or axons from ventral tegmental area (VTA) is currently documented. According to the hypothesis that ongoing autophagy prevents METH-induced DA toxicity, we tested whether systemic injection of autophagy inhibitors such as asparagine (ASN, 1000 mg/Kg) or glutamine (GLN, 1000 mg/Kg), may extend METH toxicity to DA cell bodies, both within SNpc and VTA, where autophagy was found to be inhibited. When METH (5 mg/Kg × 4, 2 h apart) was administered to C57Bl/6 mice following ASN or GLN, a frank loss of cell bodies takes place within SNpc and a loss of both axons and cell bodies of VTA neurons is documented. These data indicate that, ongoing autophagy protects DA neurons and determines the refractoriness of cell bodies to METH-induced toxicity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hannah Faris ◽  
Mohammadali Almasieh ◽  
Leonard A. Levin

AbstractAxonal degeneration is a common feature of multiple neurodegenerative diseases, yet the mechanisms underlying its various manifestations are incompletely understood. We previously demonstrated that axonal degeneration is associated with externalization of phosphatidylserine (PS), which precedes morphological evidence of degeneration, is redox-sensitive, and is delayed in Wallerian degeneration slow (WldS) mutant animals. Phosphatidylethanolamine (PE) is the other major membrane phospholipid in the inner leaflet of the cell membrane, and given that PS signals apoptosis, phagocytosis, and degeneration, we hypothesized that PS and PE membrane dynamics play distinct roles in axonal degeneration. To test this hypothesis, axonal degeneration was induced with calcium ionophores in postnatal rat retinal ganglion cells, and PS- and PE-specific fluorescent probes used to measure their externalization over time. In untreated cells, cell-surface PS was prominent in the cell body alone. Elevation of intracellular calcium with calcium ionophores resulted in significantly increased levels of PS externalization in the cell body, axon, and axon growth cone. Unlike PS, cell-surface PE was diffusely distributed in untreated cells, with comparable levels across the soma, axons, and axon terminals. After exposure to calcium ionophores, PE externalization significantly increased in the cell body and axon. Elevated intracellular calcium also resulted in the formation of axonal blebs which exclusively contained externalized PS, but not PE. Together, these results indicated distinct patterns of externalized PS and PE in normal and degenerating neurons, suggesting a differential role for these phospholipids in transducing neuronal injury.


Sign in / Sign up

Export Citation Format

Share Document