THE EFFECT OF LEAF “TOUGHNESS” ON THE FEEDING OF LARVAE OF THE MUSTARD BEETLE PHAEDON COCHLEARIAE FAB

1962 ◽  
Vol 5 (1) ◽  
pp. 74-78 ◽  
Author(s):  
M. T. TANTON
1990 ◽  
Vol 15 (3) ◽  
pp. 311-320 ◽  
Author(s):  
COLIN M. NICHOLS-ORIANS ◽  
JACK C. SCHULTZ
Keyword(s):  

Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 378 ◽  
Author(s):  
Peter H. Tellez ◽  
Carrie L. Woods ◽  
Stephen Formel ◽  
Sunshine A. Van Bael

Vascular epiphytes contribute up to 35% of the plant diversity and foliar biomass of flowering plants. The family Bromeliaceae is a monophyletic group of plants native to the Neotropics. Epiphytic bromeliads form associations with distinct groups of organisms but their relationship with foliar fungal endophytes remain underexplored. In this study we examined the relationship of foliar fungal endophytes to host photosynthetic pathways and associated ecophysiological traits. We sampled the fungal endophyte communities of 67 host individuals in six epiphytic bromeliad species differing in C3 and crassulacean acid metabolism (CAM) photosynthetic pathways. We tested whether endophyte assemblages were associated with ecophysiological leaf traits related to host photosynthetic pathways. Our results indicate that (1) C3 and CAM bromeliads host dissimilar endophyte assemblages, (2) endophyte communities in C3 bromeliads are characterized by variable relative abundances of fungal orders; conversely, CAM associated endophyte communities were characterized by consistent relative abundances of fungal orders, and (3) endophyte communities in bromeliads are distributed along a continuum of leaf toughness and leaf water content. Taken together, our study suggests that host physiology and associated ecophysiological traits of epiphytic bromeliads may represent biotic filters for communities of fungal endophytes in the tropics.


2019 ◽  
Vol 35 (6) ◽  
pp. 270-279
Author(s):  
Benton N. Taylor ◽  
Laura R. Ostrowsky

AbstractNitrogen-fixing plants provide critical nitrogen inputs that support the high productivity of tropical forests, but our understanding of the ecology of nitrogen fixers – and especially their interactions with herbivores – remains incomplete. Herbivores may interact differently with nitrogen fixers vs. non-fixers due to differences in leaf nitrogen content and herbivore defence strategies. To examine these potential differences, our study compared leaf carbon, nitrogen, toughness, chemical defence and herbivory for four nitrogen-fixing tree species (Inga oerstediana, Inga sapindoides, Inga thibaudiana and Pentaclethra macroloba) and three non-fixing species (Anaxagorea crassipetala, Casearia arborea and Dipteryx panamensis) in a lowland tropical rain forest. Leaf chemical defence, not nutritional content, was the primary driver of herbivore damage among our species. Even though nitrogen fixers exhibited 21.1% higher leaf nitrogen content, 20.1% lower C:N ratios and 15.4% lower leaf toughness than non-fixers, we found no differences in herbivory or chemical defence between these two plant groups. Our results do not support the common hypotheses that nitrogen fixers experience preferential herbivory or that they produce more nitrogen-rich defensive compounds than non-fixers. Rather, these findings suggest strong species-specific differences in plant–herbivore relationships among both nitrogen-fixing and non-fixing tropical trees.


2008 ◽  
Vol 103 (5) ◽  
pp. 757-767 ◽  
Author(s):  
Jennifer Read ◽  
Gordon D. Sanson ◽  
Elizabeth Caldwell ◽  
Fiona J. Clissold ◽  
Alex Chatain ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document