scholarly journals Relationships between Foliar Fungal Endophyte Communities and Ecophysiological Traits of CAM and C3 Epiphytic Bromeliads in a Neotropical Rainforest

Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 378 ◽  
Author(s):  
Peter H. Tellez ◽  
Carrie L. Woods ◽  
Stephen Formel ◽  
Sunshine A. Van Bael

Vascular epiphytes contribute up to 35% of the plant diversity and foliar biomass of flowering plants. The family Bromeliaceae is a monophyletic group of plants native to the Neotropics. Epiphytic bromeliads form associations with distinct groups of organisms but their relationship with foliar fungal endophytes remain underexplored. In this study we examined the relationship of foliar fungal endophytes to host photosynthetic pathways and associated ecophysiological traits. We sampled the fungal endophyte communities of 67 host individuals in six epiphytic bromeliad species differing in C3 and crassulacean acid metabolism (CAM) photosynthetic pathways. We tested whether endophyte assemblages were associated with ecophysiological leaf traits related to host photosynthetic pathways. Our results indicate that (1) C3 and CAM bromeliads host dissimilar endophyte assemblages, (2) endophyte communities in C3 bromeliads are characterized by variable relative abundances of fungal orders; conversely, CAM associated endophyte communities were characterized by consistent relative abundances of fungal orders, and (3) endophyte communities in bromeliads are distributed along a continuum of leaf toughness and leaf water content. Taken together, our study suggests that host physiology and associated ecophysiological traits of epiphytic bromeliads may represent biotic filters for communities of fungal endophytes in the tropics.

Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


1992 ◽  
Vol 70 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Jeffrey G. Duckett ◽  
Roberto Ligrone

The ventral epidermal cells of the photosynthetic, surface-living gametophytes of Lycopodium cernuum, collected from moist shaded banks in Peninsular Malaysia, contain an aseptate fungus. In some cells the hyphae are thick walled and form coils encapsulated by a thin layer of host wall material. In others the fungus is thin walled and shows limited differentiation into larger trunk hyphae and arbuscules. The adjacent host cytoplasm, separated from the fungus by a granular interfacial matrix, contains numerous chloroplasts, mitochondria, and microtubules. The hyphae contact the substratum via the ventral walls of the epidermal cells and the rhizoids are free from infection. In the protocorm and root nodules, aseptate hyphae initially colonize mucilage-filled schizogenous intercellular spaces. Subsequent invasion of the host cells is associated with the development of massive overgrowths of host wall material. The fungal associations in L. cernuum share a mixture of attributes otherwise found in different angiosperm mycorrhizae and in mycotrophic relationships in liverworts. Wall ingrowths are present in both the gametophyte and sporophyte cells in the placenta of L. cernuum. The very limited development of the placenta, compared with L. appressum, certain bryophytes and ferns, the diminutive size, and early senescence of the gametophytes of L. cernuum are all linked to the presence of the protocorm. This massive absorptive organ, homologous to a foot, in terms of its position in sporophyte ontogeny, but external to the parent gametophyte, derives its nutrition partly from photosynthesis and partly from its fungal endophyte. Key words: chloroplasts, Lycopodium, mycorrhiza, pteridophytes, root nodules, symbiosis, transfer cells.


Phytotaxa ◽  
2021 ◽  
Vol 514 (3) ◽  
pp. 247-260
Author(s):  
KASUN THAMBUGALA ◽  
DINUSHANI DARANAGAMA ◽  
SAGARIKA KANNANGARA ◽  
THENUKA KODITUWAKKU

Endophytic fungi are a diverse group of microorganisms that live asymptomatically in healthy tissues of host and they have been reported from all kinds of plant tissues such as leaves, stems, roots, flowers, and fruits. In this study, fungal endophytes associated with tea leaves (Camellia sinensis) were collected from Kandy, Kegalle, and Nuwara Eliya districts in Sri Lanka and were isolated, characterized, and identified. A total of twenty endophytic fungal isolates belonging to five genera were recovered and ITS-rDNA sequence data were used to identify them. All isolated endophytic fungal strains belong to the phylum Ascomycota and the majority of these isolates were identified as Colletotrichum species. Phyllosticta capitalensis was the most commonly found fungal endophyte in tea leaves and was recorded in all three districts where the samples were collected. This is the very first investigation on fungal endophytes associated with C. sinensis in Sri Lanka based on molecular sequence data. In addition, a comprehensive account of known endophytic fungi reported worldwide on Camellia sinensis is provided.


Botany ◽  
2015 ◽  
Vol 93 (4) ◽  
pp. 233-241 ◽  
Author(s):  
James S. Santangelo ◽  
Nash E. Turley ◽  
Marc T.J. Johnson

Plant – fungal endophyte interactions are common in nature and they can shape the ecology of plants. Vertically transmitted endophytes are hypothesized to serve as mutualists, protecting plants from herbivores. If this hypothesis is true, then we expect endophytes to be most abundant in the presence of herbivores and least abundant in their absence, assuming endophytes incur a cost to their host. We tested this prediction by studying the effects of intense rabbit (Oryctolagus cuniculus Linnaeus) grazing on grass–endophyte interactions at Silwood Park, UK. We examined seeds of red fescue (Festuca rubra L.) collected from 15 natural populations that were protected from rabbits for 0.3–21 years. Contrary to our prediction, the mean proportion of seeds with endophytes increased 1.84×, from 0.45 to 0.83, following 21 years of rabbit exclusion. To better understand the mechanisms driving this increase in frequency, we conducted a fully factorial greenhouse experiment where we manipulated the presence or absence of endophyte infection, intraspecific competition, and simulated grazing on F. rubra plants. In both damaged and undamaged treatments, infected plants produced approximately twice as much biomass as uninfected plants, and endophytes did not influence tolerance to herbivory. These results suggest that endophytes directly change plant growth but not compensatory responses to damage. In the absence of competitors, infected plants produced 2.17× more biomass than uninfected plants, whereas in the presence of competitors, infected plants produced only 1.55× more biomass than uninfected plants. This difference suggests that intraspecific competition might lessen the benefits of endophyte infection. Our results do not support the defensive mutualism hypothesis, but instead suggest that endophyte-induced plant growth is important in shaping the costs and benefits of endophytes in our system.


Botany ◽  
2012 ◽  
Vol 90 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Michelle Hubbard ◽  
James Germida ◽  
Vladimir Vujanovic

Seed germination is a critical life stage for plants survival and timely seedling establishment especially in stressful environments. We hypothesized that fungal endophytes would improve wheat seed germination under heat and drought stress. The hydrothermal time (HTT) model of germination is a conceptual model useful for predicting the timing and energy of germination (EG) under a given set of conditions. The HTT and EG are applied, for the first time, to determine if one or more compatible endophytic fungi enhance heat or drought tolerance in wheat. Fungal endophytes tested dramatically increased the percent of germination, improved EG and HTT values, and diminished wheat susceptibility to heat and drought as measured by fresh weight of seedlings. When colonized by the most effective fungal endophyte, the values of the parameters tested in wheat seeds exposed to heat stress resembled those of unstressed seeds.


2015 ◽  
Vol 32 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Charles R. Knapp ◽  
Silvia Alvarez-Clare

Abstract:Herbivores are predicted to forage on a variety of plants in order to obtain a nutritionally sufficient diet. Most herbivores, however, forage non-randomly and may be influenced by morphological, chemical and physical traits in their food. We examined the influence of several leaf traits on food selection for the Exuma rock iguana (Cyclura cychlura figginsi). We expected the iguana to prefer leaves with higher nutrient concentration and lower physical defences, such as reflected by high N, P, Ca, K, Mg concentrations and low leaf density and per cent concentrations of cellulose, hemicellulose and lignin, respectively. We quantified selection by examining 30 faecal samples and analysing traits of leaves from the 10 most common plants on the island. Our results showed substantial variability in all measured traits among species but food preference only for less-dense leaves, a good indicator of low leaf toughness. Our results are the first to demonstrate that physical leaf traits can influence food selection in a true herbivorous lizard and offer a basis for future testing.


Plant Ecology ◽  
2021 ◽  
Author(s):  
Jessica Y. L. Tay ◽  
Gerhard Zotz ◽  
Helena J. R. Einzmann

AbstractVascular epiphytes represent almost 10% of all terrestrial plant diversity. Despite the extensive research on the functional ecology and challenges of epiphytic growth, there is still very little known on how exposure to mechanically induced stress affects the growth and development of epiphytes. Therefore, this study investigated the effect of such mechanical stress on the growth and biomass allocation of epiphytic bromeliads. Juvenile plants of two species were subjected to two types of mechanical stress in the greenhouse—permanent displacement and temporary, recurring mechanical flexing. ANOVAs were used to test possible treatment effects on growth, root–shoot ratio, root diameter, and root area distribution ratio. Contrary to previous studies on herbaceous plants, these bromeliads showed little to no change in root and shoot properties in either species. The root–shoot ratio increased in disturbed Guzmania lingulata plants, but not in Vriesea sp. Treatment effects on growth were inconsistent: a stress effect on growth was significant only in the first 2 months of the experiment in G. lingulata, whilst none of the stress treatments negatively affected growth in Vriesea sp. All disturbed plants showed some degree of curvature on their stems and leaves against the area of stress to obtain an upright position. This was probably related to the maintenance of a functional tank. This study provides quantitative and qualitative data to understand thigmomorphogenic responses of bromeliads to mechanical stress. Future studies could include field surveys to quantify on-site mechanical stresses and the corresponding morphological changes in vascular epiphytes.


1999 ◽  
Vol 77 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Norio Sahashi ◽  
Takanori Kubono ◽  
Yukiko Miyasawa ◽  
Shin'ichiro Ito

To determine the dominant fungal endophytes of the Japanese beech (Fagus crenata Blume) and to monitor their isolation frequency, we isolated fungi from symptomless organs of beech including leaves, petioles, and current and old (1- to 5-year-old) twigs after surface sterilization. Of the 13 fungal taxa obtained, 3 were isolated most often. An unidentified species of Discula and an unidentified sterile fungus, Lb, were isolated frequently from leaves, and an unidentified species of Phomopsis was isolated most frequently from twigs. The isolation frequency over the growing season varied for the two dominant fungal species in the leaves, Discula sp. and Lb. These two species had similar patterns of isolation, even in petioles and current-year twigs, although isolation frequencies of a given species varied with organs. An organ-specific distribution of the fungal species in the host plant was apparent. The three fungal species noted above were considered to be the dominant endophytes of the Japanese beech.Key words: fungal endophyte, Fagus crenata, isolation frequency, organ specificity.


Author(s):  
Carla Bridget Milazzo ◽  
Katherine Grace Zulak ◽  
Mariano Jordi Muria-Gonzalez ◽  
Darcy Jones ◽  
Matthew Power ◽  
...  

Over the last decade, the microbiome has received increasing attention as a key factor in macroorganism fitness. Sustainable pest management requires an understanding of the complex microbial endophyte communities existing symbiotically within plants and the way synthetic pesticides interact with them. Fungal endophytes are known to benefit plant growth and fitness and may deter pests and diseases. Recent advances in high-throughput sequencing (HTS) have enabled integrative microbiome studies especially in agricultural contexts. Here we profile the fungal endophyte community in the phyllosphere of two barley (Hordeum vulgare) cultivars exposed to two systemic foliar fungicides using metabarcoding, a HTS tool that constructs community profiles from environmental DNA (eDNA). We studied the fungal nuclear ribosomal large subunit (LSU) D2 and ITS2 DNA markers through a bioinformatics pipeline introduced here. We found 88 and 128 unique amplicon sequence variants (ASVs) using the D2 and ITS2 metabarcoding assays, respectively. With principal coordinate analysis (PCoA) and PERMANOVA, ASV diversity did not change in response to barley cultivar or fungicide treatment, however the community structure of unsprayed plants did change between two collection times eight days apart. The workflow described here can be applied to other microbiome studies in agriculture and we hope it encourages further research into crop microbiomes to improve agroecosystem management.


Sign in / Sign up

Export Citation Format

Share Document