Use of electronic health record clinical decision support tool for HCV birth cohort screening

2017 ◽  
Vol 24 (11) ◽  
pp. 1076-1076 ◽  
Author(s):  
D. N. Fitch ◽  
A. Dharod ◽  
C. L. Campos ◽  
M. Núñez
2020 ◽  
Vol 41 (S1) ◽  
pp. s368-s368
Author(s):  
Mary Acree ◽  
Kamaljit Singh ◽  
Urmila Ravichandran ◽  
Jennifer Grant ◽  
Gary Fleming ◽  
...  

Background: Empiric antibiotic selection is challenging and requires knowledge of the local antibiogram, national guidelines and patient-specific factors, such as drug allergy and recent antibiotic exposure. Clinical decision support for empiric antibiotic selection has the potential to improve adherence to guidelines and improve patient outcomes. Methods: At NorthShore University HealthSystem, a 4-hospital, 789 bed system, an automated point-of-care decision support tool referred to as Antimicrobial Stewardship Assistance Program (ASAP) was created for empiric antibiotic selection for 4 infectious syndromes: pneumonia, skin and soft-tissue infections, urinary tract infection, and intra-abdominal infection. The tool input data from the electronic health record, which can be modified by any user. Using an algorithm created with electronic health record data, antibiogram data, and national guidelines, the tool produces an antibiotic recommendation that can be ordered via a link to order entry. If the tool identifies a patient with a high likelihood for a multidrug-resistant infection, a consultation by an infectious diseases specialist is recommended. Utilization of the tool and associated outcomes were evaluated from July 2018 to May 2019. Results: The ASAP tool was executed by 140 unique, noninfectious diseases providers 790 times. The tool was utilized most often for pneumonia (194 tool uses), followed by urinary tract infection (166 tool uses). The most common provider type to use the tool was an internal medicine hospitalist. The tool increased adherence to the recommended antibiotic regimen for each condition. Antibiotic appropriateness was assessed by an infectious diseases physician. Antibiotics were considered appropriate when they were similar to the antibiotic regimen recommended by the ASAP. Inappropriate antibiotics were classified as broad or narrow. When antibiotic coverage was appropriate, hospital length of stay was statistically significantly shorter (4.8 days vs 6.8 days for broad antibiotics vs 7.4 days for narrow antibiotics; P < .01). No significant differences were identified in mortality or readmission. Conclusions: A clinical decision support tool in the electronic health record can improve adherence to recommended empiric antibiotic therapy. Use of appropriate antibiotics recommended by such a tool can reduce hospital length of stay.Funding: NoneDisclosures: None


Author(s):  
Kathryn Dzintars ◽  
Valeria M Fabre ◽  
Edina Avdic ◽  
Janessa Smith ◽  
Victoria Adams-Sommer ◽  
...  

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this manuscript is to describe our experience developing an antimicrobial stewardship (AS) module as a clinical decision support tool in the Epic electronic health record (EHR). Summary Clinical decision support systems within the EHR can be used to decrease use of broad-spectrum antibiotics, improve antibiotic selection and dosing, decrease adverse effects, reduce antibiotic costs, and reduce the development of antibiotic resistance. The Johns Hopkins Hospital constructed an AS module within Epic. Customized stewardship alerts and scoring systems were developed to triage patients requiring stewardship intervention. This required a multidisciplinary approach with a team comprising AS physicians and pharmacists and Epic information technology personnel, with assistance from clinical microbiology and infection control when necessary. In addition, an intervention database was enhanced with stewardship-specific interventions, and workbench reports were developed specific to AS needs. We herein review the process, advantages, and challenges associated with the development of the Epic AS module. Conclusion Customizing an AS module in an EHR requires significant time and expertise in antimicrobials; however, AS modules have the potential to improve the efficiency of AS personnel in performing daily stewardship activities and reporting through a single system.


2020 ◽  
Vol 10 (3) ◽  
pp. 103
Author(s):  
David Gallagher ◽  
Congwen Zhao ◽  
Amanda Brucker ◽  
Jennifer Massengill ◽  
Patricia Kramer ◽  
...  

Unplanned hospital readmissions represent a significant health care value problem with high costs and poor quality of care. A significant percentage of readmissions could be prevented if clinical inpatient teams were better able to predict which patients were at higher risk for readmission. Many of the current clinical decision support models that predict readmissions are not configured to integrate closely with the electronic health record or alert providers in real-time prior to discharge about a patient’s risk for readmission. We report on the implementation and monitoring of the Epic electronic health record—“Unplanned readmission model version 1”—over 2 years from 1/1/2018–12/31/2019. For patients discharged during this time, the predictive capability to discern high risk discharges was reflected in an AUC/C-statistic at our three hospitals of 0.716–0.760 for all patients and 0.676–0.695 for general medicine patients. The model had a positive predictive value ranging from 0.217–0.248 for all patients. We also present our methods in monitoring the model over time for trend changes, as well as common readmissions reduction strategies triggered by the score.


2021 ◽  
Vol 147 ◽  
pp. 104349
Author(s):  
Thomas McGinn ◽  
David A. Feldstein ◽  
Isabel Barata ◽  
Emily Heineman ◽  
Joshua Ross ◽  
...  

Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 100488
Author(s):  
Rachel Gold ◽  
Mary Middendorf ◽  
John Heintzman ◽  
Joan Nelson ◽  
Patrick O'Connor ◽  
...  

2014 ◽  
Vol 141 (5) ◽  
pp. 718-723 ◽  
Author(s):  
Gary W. Procop ◽  
Lisa M. Yerian ◽  
Robert Wyllie ◽  
A. Marc Harrison ◽  
Kandice Kottke-Marchant

Sign in / Sign up

Export Citation Format

Share Document