scholarly journals Use of an Electronic Health Record Clinical Decision Support Tool to Improve Antibiotic Prescribing for Acute Respiratory Infections: The ABX-TRIP Study

2012 ◽  
Vol 28 (6) ◽  
pp. 810-816 ◽  
Author(s):  
Cara B. Litvin ◽  
Steven M. Ornstein ◽  
Andrea M. Wessell ◽  
Lynne S. Nemeth ◽  
Paul J. Nietert
Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 100488
Author(s):  
Rachel Gold ◽  
Mary Middendorf ◽  
John Heintzman ◽  
Joan Nelson ◽  
Patrick O'Connor ◽  
...  

2020 ◽  
Vol 41 (S1) ◽  
pp. s368-s368
Author(s):  
Mary Acree ◽  
Kamaljit Singh ◽  
Urmila Ravichandran ◽  
Jennifer Grant ◽  
Gary Fleming ◽  
...  

Background: Empiric antibiotic selection is challenging and requires knowledge of the local antibiogram, national guidelines and patient-specific factors, such as drug allergy and recent antibiotic exposure. Clinical decision support for empiric antibiotic selection has the potential to improve adherence to guidelines and improve patient outcomes. Methods: At NorthShore University HealthSystem, a 4-hospital, 789 bed system, an automated point-of-care decision support tool referred to as Antimicrobial Stewardship Assistance Program (ASAP) was created for empiric antibiotic selection for 4 infectious syndromes: pneumonia, skin and soft-tissue infections, urinary tract infection, and intra-abdominal infection. The tool input data from the electronic health record, which can be modified by any user. Using an algorithm created with electronic health record data, antibiogram data, and national guidelines, the tool produces an antibiotic recommendation that can be ordered via a link to order entry. If the tool identifies a patient with a high likelihood for a multidrug-resistant infection, a consultation by an infectious diseases specialist is recommended. Utilization of the tool and associated outcomes were evaluated from July 2018 to May 2019. Results: The ASAP tool was executed by 140 unique, noninfectious diseases providers 790 times. The tool was utilized most often for pneumonia (194 tool uses), followed by urinary tract infection (166 tool uses). The most common provider type to use the tool was an internal medicine hospitalist. The tool increased adherence to the recommended antibiotic regimen for each condition. Antibiotic appropriateness was assessed by an infectious diseases physician. Antibiotics were considered appropriate when they were similar to the antibiotic regimen recommended by the ASAP. Inappropriate antibiotics were classified as broad or narrow. When antibiotic coverage was appropriate, hospital length of stay was statistically significantly shorter (4.8 days vs 6.8 days for broad antibiotics vs 7.4 days for narrow antibiotics; P < .01). No significant differences were identified in mortality or readmission. Conclusions: A clinical decision support tool in the electronic health record can improve adherence to recommended empiric antibiotic therapy. Use of appropriate antibiotics recommended by such a tool can reduce hospital length of stay.Funding: NoneDisclosures: None


2014 ◽  
Vol 141 (5) ◽  
pp. 718-723 ◽  
Author(s):  
Gary W. Procop ◽  
Lisa M. Yerian ◽  
Robert Wyllie ◽  
A. Marc Harrison ◽  
Kandice Kottke-Marchant

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S31-S31
Author(s):  
Sena Veazey ◽  
Maria SerioMelvin ◽  
David E Luellen ◽  
Angela Samosorn ◽  
Alexandria Helms ◽  
...  

Abstract Introduction In disaster or mass casualty situations, access to remote burn care experts, communication, or resources may be limited. Furthermore, burn injuries are complex and require substantial training and knowledge beyond basic clinical care. Development and use of decision support (DS) technologies may provide a solution for addressing this need. Devices capable of delivering burn management recommendations can enhance the provider’s ability to make decisions and perform interventions in complex care settings. When coupled with merging augmented reality (AR) technologies these tools may provide additional capabilities to enhance medical decision-making, visualization, and workflow when managing burns. For this project, we developed a novel AR-based application with enhanced integrated clinical practice guidelines (CPGs) to manage large burn injuries for use in different environments, such as disasters. Methods We identified an AR system that met our requirements to include portability, infrared camera, gesture and voice control, hands-free control, head-mounted display, and customized application development abilities. Our goal was to adapt burn CPGs to make use of AR concepts as part of an AR-enabled burn clinical decision support system supporting four sub-applications to assist users with specific interventional tasks relevant to burn care. We integrated relevant CPGs and a media library with photos and videos as additional references. Results We successfully developed a clinical decision support tool that integrates burn CPGs with enhanced capabilities utilizing AR technology. The main interface allows input of patient demographics and injuries with step-by-step guidelines that follow typical burn management care and workflow. There are four sub-applications to assist with these tasks, which include: 1) semi-automated burn wound mapping to calculate total body surface area; 2) hourly burn fluid titration and recommendations for resuscitation; 3) medication calculator for accurate dosing in preparation for procedures and 4) escharotomy instructor with holographic overlays. Conclusions We developed a novel AR-based clinical decision support tool for management of burn injuries. Development included adaptation of CPGs into a format to guide the user through burn management using AR concepts. The application will be tested in a prospective research study to determine the effectiveness, timeliness, and performance of subjects using this AR-software compared to standard of care. We fully expect that the tool will reduce cognitive workload and errors, ensuring safety and proper adherence to guidelines.


Sign in / Sign up

Export Citation Format

Share Document