scholarly journals GGM knockoff filter: False discovery rate control for Gaussian graphical models

Author(s):  
Jinzhou Li ◽  
Marloes H. Maathuis
Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 167 ◽  
Author(s):  
Qingyang Zhang

The nonparanormal graphical model has emerged as an important tool for modeling dependency structure between variables because it is flexible to non-Gaussian data while maintaining the good interpretability and computational convenience of Gaussian graphical models. In this paper, we consider the problem of detecting differential substructure between two nonparanormal graphical models with false discovery rate control. We construct a new statistic based on a truncated estimator of the unknown transformation functions, together with a bias-corrected sample covariance. Furthermore, we show that the new test statistic converges to the same distribution as its oracle counterpart does. Both synthetic data and real cancer genomic data are used to illustrate the promise of the new method. Our proposed testing framework is simple and scalable, facilitating its applications to large-scale data. The computational pipeline has been implemented in the R package DNetFinder, which is freely available through the Comprehensive R Archive Network.


2019 ◽  
Vol 28 ◽  
pp. 100310
Author(s):  
J. Carrón Duque ◽  
A. Buzzelli ◽  
Y. Fantaye ◽  
D. Marinucci ◽  
A. Schwartzman ◽  
...  

2019 ◽  
Vol 35 (17) ◽  
pp. 3184-3186
Author(s):  
Xiao-Fei Zhang ◽  
Le Ou-Yang ◽  
Shuo Yang ◽  
Xiaohua Hu ◽  
Hong Yan

Abstract Summary To identify biological network rewiring under different conditions, we develop a user-friendly R package, named DiffNetFDR, to implement two methods developed for testing the difference in different Gaussian graphical models. Compared to existing tools, our methods have the following features: (i) they are based on Gaussian graphical models which can capture the changes of conditional dependencies; (ii) they determine the tuning parameters in a data-driven manner; (iii) they take a multiple testing procedure to control the overall false discovery rate; and (iv) our approach defines the differential network based on partial correlation coefficients so that the spurious differential edges caused by the variants of conditional variances can be excluded. We also develop a Shiny application to provide easier analysis and visualization. Simulation studies are conducted to evaluate the performance of our methods. We also apply our methods to two real gene expression datasets. The effectiveness of our methods is validated by the biological significance of the identified differential networks. Availability and implementation R package and Shiny app are available at https://github.com/Zhangxf-ccnu/DiffNetFDR. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document