Genes
Latest Publications


TOTAL DOCUMENTS

6194
(FIVE YEARS 4690)

H-INDEX

53
(FIVE YEARS 22)

Published By Mdpi Ag

2073-4425

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 156
Author(s):  
Purushothaman Ramamoorthy ◽  
Raju Bheemanahalli ◽  
Stephen L. Meyers ◽  
Mark W. Shankle ◽  
Kambham Raja Reddy

Drought, ultraviolet-B (UV-B), and nitrogen stress are significant constraints for sweetpotato productivity. Their impact on plant growth and development can be acute, resulting in low productivity. Identifying phenotypes that govern stress tolerance in sweetpotatoes is highly desirable to develop elite cultivars with better yield. Ten sweetpotato cultivars were grown under nonstress (100% replacement of evapotranspiration (ET)), drought-stress (50% replacement of ET), UV-B (10 kJ), and low-nitrogen (20% LN) conditions. Various shoot and root morphological, physiological, and gas-exchange traits were measured at the early stage of the crop growth to assess its performance and association with the storage root number. All three stress factors caused significant changes in the physiological and root- and shoot-related traits. Drought stress reduced most shoot developmental traits (29%) to maintain root growth. UV-B stress increased the accumulation of plant pigments and decreased the photosynthetic rate. Low-nitrogen treatment decreased shoot growth (11%) and increased the root traits (18%). The highly stable and productive cultivars under all four treatments were identified using multitrait stability index analysis and weighted average of absolute scores (WAASB) analyses. Further, based on the total stress response indices, ‘Evangeline’, ‘O’Henry’, and ‘Beauregard B-14’ were identified as vigorous under drought; ‘Evangeline’, ‘Orleans’, and ‘Covington’ under UV-B; and ‘Bonita’, ‘Orleans’, and ‘Beauregard B-14’ cultivars showed greater tolerance to low nitrogen. The cultivars ‘Vardaman’ and ‘NC05-198’ recorded a low tolerance index across stress treatments. This information could help determine which plant phenotypes are desirable under stress treatment for better productivity. The cultivars identified as tolerant, sensitive, and well-adapted within and across stress treatments can be used as source materials for abiotic stress tolerance breeding programs.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 157
Author(s):  
Rocío Gómez ◽  
Yessica S. Tapia-Guerrero ◽  
Bulmaro Cisneros ◽  
Lorena Orozco ◽  
César Cerecedo-Zapata ◽  
...  

Spinocerebellar ataxias (SCAs) conform a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Five of the most frequent SCAs are caused by a CAG repeat expansion in the exons of specific genes. The SCAs incidence and the distribution of polymorphic CAG alleles vary among populations and ethnicities. Thus, characterization of the genetic architecture of ethnically diverse populations, which have undergone recent admixture and demographic events, could facilitate the identification of genetic risk factors. Owing to the great ethnic diversity of the Mexican population, this study aimed to analyze the allele frequencies of five SCA microsatellite loci (SCA1, SCA2, SCA3, SCA6, and SCA7) in eleven Mexican Native American (MNA) populations. Data from the literature were used to compare the allelic distribution of SCA loci with worldwide populations. The SCA loci allelic frequencies evidenced a certain genetic homogeneity in the MNA populations, except for Mayans, who exhibited distinctive genetic profiles. Neither pathological nor large normal alleles were found in MNA populations, except for the SCA2 pre-mutated allele in the Zapotec population. Collectively, our findings demonstrated the contribution of the MNA ancestry in shaping the genetic structure of contemporary Mexican Mestizo populations. Our results also suggest that Native American ancestry has no impact on the origin of SCAs in the Mexican population. Instead, the acquisition of pathological SCA alleles could be associated with European migration.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 151
Author(s):  
Kenta Nagahori ◽  
Ning Qu ◽  
Miyuki Kuramasu ◽  
Yuki Ogawa ◽  
Daisuke Kiyoshima ◽  
...  

Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11,Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin,ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Nicholas J. Barrett ◽  
Jakob Thyrring ◽  
Elizabeth M. Harper ◽  
Mikael K. Sejr ◽  
Jesper G. Sørensen ◽  
...  

Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‰) and low salinities (15‰) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‰, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‰, 15‰ and 5‰) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 149
Author(s):  
María Domínguez-Ruiz ◽  
Montserrat Rodríguez-Ballesteros ◽  
Marta Gandía ◽  
Elena Gómez-Rosas ◽  
Manuela Villamar ◽  
...  

Pathogenic variants in the PJVK gene cause the DFNB59 type of autosomal recessive non-syndromic hearing impairment (AR-NSHI). Phenotypes are not homogeneous, as a few subjects show auditory neuropathy spectrum disorder (ANSD), while others show cochlear hearing loss. The numbers of reported cases and pathogenic variants are still small to establish accurate genotype-phenotype correlations. We investigated a cohort of 77 Spanish familial cases of AR-NSHI, in whom DFNB1 had been excluded, and a cohort of 84 simplex cases with isolated ANSD in whom OTOF variants had been excluded. All seven exons and exon-intron boundaries of the PJVK gene were sequenced. We report three novel DFNB59 cases, one from the AR-NSHI cohort and two from the ANSD cohort, with stable, severe to profound NSHI. Two of the subjects received unilateral cochlear implantation, with apparent good outcomes. Our study expands the spectrum of PJVK mutations, as we report four novel pathogenic variants: p.Leu224Arg, p.His294Ilefs*43, p.His294Asp and p.Phe317Serfs*20. We review the reported cases of DFNB59, summarize the clinical features of this rare subtype of AR-NSHI and discuss the involvement of PJVK in ANSD.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 148
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Jinglie Zhou ◽  
Susanna Theroux ◽  
Susannah G. Tringe

Aerobic bacteria that degrade methylphosphonates and produce methane as a byproduct have emerged as key players in marine carbon and phosphorus cycles. Here, we present two new draft genome sequences of the genus Marivita that were assembled from metagenomes from hypersaline former industrial salterns and compare them to five other Marivita reference genomes. Phylogenetic analyses suggest that both of these metagenome-assembled genomes (MAGs) represent new species in the genus. Average nucleotide identities to the closest taxon were <85%. The MAGs were assembled with SPAdes, binned with MetaBAT, and curated with scaffold extension and reassembly. Both genomes contained the phnCDEGHIJLMP suite of genes encoding the full C-P lyase pathway of methylphosphonate degradation and were significantly more abundant in two former industrial salterns than in nearby reference and restored wetlands, which have lower salinity levels and lower methane emissions than the salterns. These organisms contain a variety of compatible solute biosynthesis and transporter genes to cope with high salinity levels but harbor only slightly acidic proteomes (mean isoelectric point of 6.48).


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 150
Author(s):  
Lydia Bergerson ◽  
Caleb Fitzmaurice ◽  
Tyler Knudtson ◽  
Halle McCormick ◽  
Alder M. Yu

Long-term shift work is widely believed to increase the risk of certain cancers, but conflicting findings between studies render this association unclear. Evidence of interplay between the circadian clock, cell cycle regulation, and DNA damage detection machinery suggests the possibility that circadian rhythm disruption consequent to shift work could alter the DNA double-strand break (DSB) repair pathway usage to favor mutagenic non-homologous end-joining (NHEJ) repair. To test this hypothesis, we compared relative usage of NHEJ and single-strand annealing (SSA) repair of a complementary ended chromosomal double-stranded break using the Repair Reporter 3 (Rr3) system in Drosophila between flies reared on 12:12 and 8:8 (simulated shift work) light:dark schedules. Actimetric analysis showed that the 8:8 light:dark schedule effectively disrupted the rhythms in locomotor output. Inaccurate NHEJ repair was not a frequent outcome in this system overall, and no significant difference was seen in the usage of NHEJ or SSA repair between the control and simulated shift work schedules. We conclude that this circadian disruption regimen does not alter the usage of mutagenic NHEJ DSB repair in the Drosophila male pre-meiotic germline, in the context of the Rr3 system.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 154
Author(s):  
Dóra Nagy ◽  
Sarah Verheyen ◽  
Kristen M. Wigby ◽  
Artem Borovikov ◽  
Artem Sharkov ◽  
...  

POGZ-related disorders (also known as White-Sutton syndrome) encompass a wide range of neurocognitive abnormalities and other accompanying anomalies. Disease severity varies widely among POGZ patients and studies investigating genotype-phenotype association are scarce. Therefore, our aim was to collect data on previously unreported POGZ patients and perform a large-scale phenotype-genotype comparison from published data. Overall, 117 POGZ patients′ genotype and phenotype data were included in the analysis, including 12 novel patients. A severity scoring system was developed for the comparison. Mild and severe phenotypes were compared with the types and location of the variants and the predicted presence or absence of nonsense-mediated RNA decay (NMD). Missense variants were more often associated with mild phenotypes (p = 0.0421) and truncating variants predicted to escape NMD presented with more severe phenotypes (p < 0.0001). Within this group, variants in the prolin-rich region of the POGZ protein were associated with the most severe phenotypes (p = 0.0004). Our study suggests that gain-of-function or dominant negative effect through escaping NMD and the location of the variants in the prolin-rich domain of the protein may play an important role in the severity of manifestations of POGZ–associated neurodevelopmental disorders.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 153
Author(s):  
László Madar ◽  
Lilla Juhász ◽  
Zsuzsanna Szűcs ◽  
Lóránt Kerkovits ◽  
Mariann Harangi ◽  
...  

Familial hypercholesterolemia (FH) is one of the most common autosomal, dominantly inherited diseases affecting cholesterol metabolism, which, in the absence of treatment, leads to the development of cardiovascular complications. The disease is still underdiagnosed, even though an early diagnosis would be of great importance for the patient to receive proper treatment and to prevent further complications. No studies are available describing the genetic background of Hungarian FH patients. In this work, we present the clinical and molecular data of 44 unrelated individuals with suspected FH. Sequencing of five FH-causing genes (LDLR, APOB, PCSK9, LDLRAP1 and STAP1) has been performed by next-generation sequencing (NGS). In cases where a copy number variation (CNV) has been detected by NGS, confirmation by multiplex ligation-dependent probe amplification (MLPA) has also been performed. We identified 47 causal or potentially causal (including variants of uncertain significance) LDLR and APOB variants in 44 index patients. The most common variant in the APOB gene was the c.10580G>A p.(Arg3527Gln) missense alteration, this being in accordance with literature data. Several missense variants in the LDLR gene were detected in more than one index patient. LDLR variants in the Hungarian population largely overlap with variants detected in neighboring countries.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Adrián Gonzalo

Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.


Sign in / Sign up

Export Citation Format

Share Document