scholarly journals Related graphs of the conjugacy classes of a 3-generator 5-group

2018 ◽  
Vol 14 ◽  
pp. 454-456
Author(s):  
Alia Husna Mohd Noor ◽  
Nor Haniza Sarmin ◽  
Hamisan Rahmat

The study on conjugacy class has started since 1968. A conjugacy class is defined as an equivalence class under the equivalence relation of being conjugate. In this research, let be a 3-generator 5-group and the scope of the graphs is a simple undirected graph. This paper focuses on the determination of the conjugacy classes of where the set omega is the subset of all commuting elements in the group. The elements of the group with order 5 are identified from the group presentation. The pair of elements are formed in the form of  which is of size two where  and  commute. In addition, the results on conjugacy classes of are applied into graph theory. The determination of the set omega is important in the computation of conjugacy classes in order to find the generalized conjugacy class graph and orbit graph. The group action that is considered to compute the conjugacy classes is conjugation action. Based on the computation, the generalized conjugacy class graph and orbit graph turned out to be a complete graph.

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Nor Haniza Sarmin ◽  
Ain Asyikin Ibrahim ◽  
Alia Husna Mohd Noor ◽  
Sanaa Mohamed Saleh Omer

In this paper, the conjugacy classes of three metabelian groups, namely the Quasi-dihedral group, Dihedral group and Quaternion group of order 16 are computed. The obtained results are then applied to graph theory, more precisely to conjugate graph and conjugacy class graph. Some graph properties such as chromatic number, clique number, dominating number and independent number are found.   


2018 ◽  
Vol 14 ◽  
pp. 434-438
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian ◽  
Hamisan Rahmat

The independence and clique polynomial are two types of graph polynomial that store combinatorial information of a graph. The independence polynomial of a graph is the polynomial in which its coefficients are the number of independent sets in the graph. The independent set of a graph is a set of vertices that are not adjacent. The clique polynomial of a graph is the polynomial in which its coefficients are the number of cliques in the graph. The clique of a graph is a set of vertices that are adjacent. Meanwhile, a graph of group G is called conjugacy class graph if the vertices are non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The independence and clique polynomial of the conjugacy class graph of a group G can be obtained by considering the polynomials of complete graph or polynomials of union of some graphs. In this research, the independence and clique polynomials of the conjugacy class graph of dihedral groups of order 2n are determined based on three cases namely when n is odd, when n and n/2 are even, and when n is even and n/2 is odd. For each case, the results of the independence polynomials are of degree two, one and two, and the results of the clique polynomials are of degree (n-1)/2, (n+2)/2 and (n-2)/2, respectively.


2020 ◽  
Vol 7 (4) ◽  
pp. 62-71
Author(s):  
Zuzan Naaman Hassan ◽  
Nihad Titan Sarhan

The energy of a graph , is the sum of all absolute values of the eigen values of the adjacency matrix which is indicated by . An adjacency matrix is a square matrix used to represent of finite graph where the rows and columns consist of 0 or 1-entry depending on the adjacency of the vertices of the graph. The group of even permutations of a finite set is known as an alternating group  . The conjugacy class graph is a graph whose vertices are non-central conjugacy classes of a group , where two vertices are connected if their cardinalities are not coprime. In this paper, the conjugacy class of alternating group  of some order for   and their energy are computed. The Maple2019 software and Groups, Algorithms, and Programming (GAP) are assisted for computations.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 149-155
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

A domination polynomial is a type of graph polynomial in which its coefficients represent the number of dominating sets in the graph. There are many researches being done on the domination polynomial of some common types of graphs but not yet for graphs associated to finite groups. Two types of graphs associated to finite groups are the conjugate graph and the conjugacy class graph. A graph of a group G is called a conjugate graph if the vertices are non-central elements of G and two distinct vertices are adjacent if they are conjugate to each other. Meanwhile, a conjugacy class graph of a group G is a graph in which its vertices are the non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The conjugate and conjugacy class graph of dihedral groups can be expressed generally as a union of complete graphs on some vertices. In this paper, the domination polynomials are computed for the conjugate and conjugacy class graphs of the dihedral groups.


2020 ◽  
Vol 16 (3) ◽  
pp. 297-299
Author(s):  
Athirah Zulkarnain ◽  
Nor Haniza Sarmin ◽  
Hazzirah Izzati Mat Hassim

A graph is formed by a pair of vertices and edges. It can be related to groups by using the groups’ properties for its vertices and edges. The set of vertices of the graph comprises the elements or sets from the group while the set of edges of the graph is the properties and condition for the graph. A conjugacy class of an element  is the set of elements that are conjugated with . Any element of a group , labelled as , is conjugated to  if it satisfies  for some elements  in  with its inverse . A conjugacy class graph of a group   is defined when its vertex set is the set of non-central conjugacy classes of  . Two distinct vertices   and   are connected by an edge if and only if their cardinalities are not co-prime, which means that the order of the conjugacy classes of  and  have common factors. Meanwhile, a simple graph is the graph that contains no loop and no multiple edges. A complete graph is a simple graph in which every pair of distinct vertices is adjacent. Moreover, a  -group is the group with prime power order. In this paper, the conjugacy class graphs for some non-abelian 3-groups are determined by using the group’s presentations and the definition of conjugacy class graph. There are two classifications of the non-abelian 3-groups which are used in this research. In addition, some properties of the conjugacy class graph such as the chromatic number, the dominating number, and the diameter are computed. A chromatic number is the minimum number of vertices that have the same colours where the adjacent vertices have distinct colours. Besides, a dominating number is the minimum number of vertices that is required to connect all the vertices while a diameter is the longest path between any two vertices. As a result of this research, the conjugacy class graphs of these groups are found to be complete graphs with chromatic number, dominating number and diameter that are equal to eight, one and one, respectively.


Author(s):  
A. M. C. U. M. Athapattu ◽  
P. G. R. S. Ranasinghe

In the field of graph theory, the complete graph  of  vertices is a simple undirected graph such that every pair of distinct vertices is connected by a unique edge. In the present work, we introduce planar subgraph  of  with maximal number of edges . Generally,  does not admit prime labeling. We present an algorithm to obtain prime-labeled subgraphs of  . We conclude the paper by stating two conjectures based on labeling of . In particular, the planar subgraph admits anti-magic labeling but does not admit edge magic total labeling.


2015 ◽  
Vol 77 (1) ◽  
Author(s):  
Nor Haniza Sarmin ◽  
Ibrahim Gambo ◽  
Sanaa Mohamed Saleh Omer

In this paper, G denotes a non-abelian metabelian group and denotes conjugacy class of the element x in G. Conjugacy class is an equivalence relation and it partitions the group into disjoint equivalence classes or sets. Meanwhile, a group is called metabelian if it has an abelian normal subgroup in which the factor group is also abelian. It has been proven by an earlier researcher that there are 25 non-abelian metabelian groups of order less than 24 which are considered in this paper. In this study, the number of conjugacy classes of non-abelian metabelian groups of order less than 24 is computed.


2016 ◽  
Vol 94 (2) ◽  
pp. 266-272
Author(s):  
ANTONIO BELTRÁN ◽  
MARÍA JOSÉ FELIPE ◽  
CARMEN MELCHOR

Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. We determine the structure of $N$ when the diameter of the graph associated to the $G$-conjugacy classes contained in $N$ is as large as possible, that is, equal to three.


1959 ◽  
Vol 11 ◽  
pp. 34-38 ◽  
Author(s):  
P. Erdös

A well-known theorem of Ramsay (8; 9) states that to every n there exists a smallest integer g(n) so that every graph of g(n) vertices contains either a set of n independent points or a complete graph of order n, but there exists a graph of g(n) — 1 vertices which does not contain a complete subgraph of n vertices and also does not contain a set of n independent points. (A graph is called complete if every two of its vertices are connected by an edge; a set of points is called independent if no two of its points are connected by an edge.) The determination of g(n) seems a very difficult problem; the best inequalities for g(n) are (3)It is not even known that g(n)1/n tends to a limit. The lower bound in (1) has been obtained by combinatorial and probabilistic arguments without an explicit construction.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Nor Haniza Sarmin ◽  
Alia Husna Mohd Noor ◽  
Sanaa Mohamed Saleh Omer

A graph consists of points which are called vertices, and connections which are called edges, which are indicated by line segments or curves joining certain pairs of vertices.  In this paper, four types of graphs which are the commuting graph, non-commuting graph conjugate graph and the conjugacy class graph for some three-generator groups are discussed. Some of the graph properties are also found which include the independent number, chromatic number, clique number and dominating number.


Sign in / Sign up

Export Citation Format

Share Document