scholarly journals The independence and clique polynomial of the conjugacy class graph of dihedral group

2018 ◽  
Vol 14 ◽  
pp. 434-438
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian ◽  
Hamisan Rahmat

The independence and clique polynomial are two types of graph polynomial that store combinatorial information of a graph. The independence polynomial of a graph is the polynomial in which its coefficients are the number of independent sets in the graph. The independent set of a graph is a set of vertices that are not adjacent. The clique polynomial of a graph is the polynomial in which its coefficients are the number of cliques in the graph. The clique of a graph is a set of vertices that are adjacent. Meanwhile, a graph of group G is called conjugacy class graph if the vertices are non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The independence and clique polynomial of the conjugacy class graph of a group G can be obtained by considering the polynomials of complete graph or polynomials of union of some graphs. In this research, the independence and clique polynomials of the conjugacy class graph of dihedral groups of order 2n are determined based on three cases namely when n is odd, when n and n/2 are even, and when n is even and n/2 is odd. For each case, the results of the independence polynomials are of degree two, one and two, and the results of the clique polynomials are of degree (n-1)/2, (n+2)/2 and (n-2)/2, respectively.

2020 ◽  
Vol 16 (1) ◽  
pp. 115-120
Author(s):  
Aliyu Suleiman ◽  
Aliyu Ibrahim Kiri

Set of vertices not joined by an edge in a graph is called the independent set of the graph. The independence polynomial of a graph is a polynomial whose coefficient is the number of independent sets in the graph. In this research, we introduce and investigate the inverse commuting graph of dihedral groups (D2N) denoted by GIC. It is a graph whose vertex set consists of the non-central elements of the group and for distinct  x,y, E D2N, x and y are adjacent if and only if xy = yx = 1  where 1 is the identity element. The independence polynomials of the inverse commuting graph for dihedral groups are also computed. A formula for obtaining such polynomials without getting the independent sets is also found, which was used to compute for dihedral groups of order 18 up to 32.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Nor Haniza Sarmin ◽  
Ain Asyikin Ibrahim ◽  
Alia Husna Mohd Noor ◽  
Sanaa Mohamed Saleh Omer

In this paper, the conjugacy classes of three metabelian groups, namely the Quasi-dihedral group, Dihedral group and Quaternion group of order 16 are computed. The obtained results are then applied to graph theory, more precisely to conjugate graph and conjugacy class graph. Some graph properties such as chromatic number, clique number, dominating number and independent number are found.   


MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 59-65
Author(s):  
Rabiha Mahmoud ◽  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a dihedral group and its conjugacy class graph. The Laplacian energy of the graph, is defined as the sum of the absolute values of the difference between the Laplacian eigenvalues and the ratio of twice the edges number divided by the vertices number. In this research, the Laplacian matrices of the conjugacy class graph of some dihedral groups, generalized quaternion groups, quasidihedral groups and their eigenvalues are first computed. Then, the Laplacian energy of the graphs are determined.


2017 ◽  
Vol 13 (4) ◽  
pp. 659-665 ◽  
Author(s):  
Rabiha Mahmoud ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

The energy of a graph which is denoted by  is defined to be the sum of the absolute values of the eigenvalues of its adjacency matrix. In this paper we present the concepts of conjugacy class graph of dihedral groups and introduce the general formula for the energy of the conjugacy class graph of dihedral groups. The energy of any dihedral group of order   in different cases, depends on the parity of   is proved in this paper. Also we introduce the general formula for the conjugacy class graph of generalized quaternion groups and quasidihedral groups.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 149-155
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

A domination polynomial is a type of graph polynomial in which its coefficients represent the number of dominating sets in the graph. There are many researches being done on the domination polynomial of some common types of graphs but not yet for graphs associated to finite groups. Two types of graphs associated to finite groups are the conjugate graph and the conjugacy class graph. A graph of a group G is called a conjugate graph if the vertices are non-central elements of G and two distinct vertices are adjacent if they are conjugate to each other. Meanwhile, a conjugacy class graph of a group G is a graph in which its vertices are the non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The conjugate and conjugacy class graph of dihedral groups can be expressed generally as a union of complete graphs on some vertices. In this paper, the domination polynomials are computed for the conjugate and conjugacy class graphs of the dihedral groups.


2012 ◽  
Vol 28 (2) ◽  
pp. 279-288
Author(s):  
VADIM E. LEVIT ◽  
◽  
EUGEN MANDRESCU ◽  

A graph with at most two vertices of the same degree is known as antiregular [ Merris, R., Antiregular graphs are universal for trees, Publ. Electrotehn. Fak. Univ. Beograd, Ser. Mat. 14 (2003) 1-3], maximally nonregular [Zykov, A. A., Fundamentals of graph theory, BCS Associates, Moscow, 1990] or quasiperfect [ Behzad, M. and Chartrand, D. M., No graph is perfect, Amer. Math. Monthly 74 (1967), 962-963]. If sk is the number of independent sets of cardinality k in a graph G, then I(G; x) = s0 +s1x+...+sαx α is the independence polynomial of G [ Gutman, I. and Harary, F., Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983), 97-106] , where α = α(G) is the size of a maximum independent set. In this paper we derive closed formulas for the independence polynomials of antiregular graphs. It results in proving that every antiregular graph is uniquely defined by its independence polynomial within the family of threshold graphs. Moreover, the independence polynomial of each antiregular graph is log-concave, it has two real roots at most, and its value at −1 belongs to {−1, 0}.


Author(s):  
Rabiha Birkia Mahmoud ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian ◽  
Amira Fadina Ahmad Fadzil

Let G be a dihedral group and Gamma its conjugacy class graph. The Laplacian energy of the graph, LE(Gamma) is defined as the sum of the absolute values of the difference between the Laplacian eigenvalues and the ratio of twice the edges number divided by the number of vertices. In this research, the Laplacian matrices of the conjugacy class graph of some dihedral groups and its eigenvalues are first computed. Then, the Laplacian energy of this graph is determined.


Author(s):  
Amir Loghman ◽  
Mahtab Khanlar Motlagh

If $s_k$ is the number of independent sets of cardinality $k$ in a graph $G$, then $I(G; x)= s_0+s_1x+…+s_{\alpha} x^{\alpha}$ is the independence polynomial of $G$ [ Gutman, I. and Harary, F., Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983) 97-106] , where $\alpha=\alpha(G)$ is the size of a maximum independent set. Also the PI polynomial of a molecular graph $G$ is defined as $A+\sum x^{|E(G)|-N(e)}$, where $N(e)$ is the number of edges parallel to $e$, $A=|V(G)|(|V(G)|+1)/2-|E(G)|$ and summation goes over all edges of $G$. In [T. Do$\check{s}$li$\acute{c}$, A. Loghman and L. Badakhshian, Computing Topological Indices by Pulling a Few Strings, MATCH Commun. Math. Comput. Chem. 67 (2012) 173-190], several topological indices for all graphs consisting of at most three strings are computed. In this paper we compute the PI and independence polynomials for graphs containing one, two and three strings.


2018 ◽  
Vol 14 ◽  
pp. 454-456
Author(s):  
Alia Husna Mohd Noor ◽  
Nor Haniza Sarmin ◽  
Hamisan Rahmat

The study on conjugacy class has started since 1968. A conjugacy class is defined as an equivalence class under the equivalence relation of being conjugate. In this research, let be a 3-generator 5-group and the scope of the graphs is a simple undirected graph. This paper focuses on the determination of the conjugacy classes of where the set omega is the subset of all commuting elements in the group. The elements of the group with order 5 are identified from the group presentation. The pair of elements are formed in the form of  which is of size two where  and  commute. In addition, the results on conjugacy classes of are applied into graph theory. The determination of the set omega is important in the computation of conjugacy classes in order to find the generalized conjugacy class graph and orbit graph. The group action that is considered to compute the conjugacy classes is conjugation action. Based on the computation, the generalized conjugacy class graph and orbit graph turned out to be a complete graph.


Author(s):  
Montauban Moreira de Oliveira Jr ◽  
Jean-Guillaume Eon

According to Löwenstein's rule, Al–O–Al bridges are forbidden in the aluminosilicate framework of zeolites. A graph-theoretical interpretation of the rule, based on the concept of independent sets, was proposed earlier. It was shown that one can apply the vector method to the associated periodic net and define a maximal Al/(Al+Si) ratio for any aluminosilicate framework following the rule; this ratio was called the independence ratio of the net. According to this method, the determination of the independence ratio of a periodic net requires finding a subgroup of the translation group of the net for which the quotient graph and a fundamental transversal have the same independence ratio. This article and a companion paper deal with practical issues regarding the calculation of the independence ratio of mainly 2-periodic nets and the determination of site distributions realizing this ratio. The first paper describes a calculation technique based on propositional calculus and introduces a multivariate polynomial, called the independence polynomial. This polynomial can be calculated in an automatic way and provides the list of all maximal independent sets of the graph, hence also the value of its independence ratio. Some properties of this polynomial are discussed; the independence polynomials of some simple graphs, such as short paths or cycles, are determined as examples of calculation techniques. The method is also applied to the determination of the independence ratio of the 2-periodic net dhc.


Sign in / Sign up

Export Citation Format

Share Document