Classical and multilinear harmonic analysis: volumes I and II(Cambridge Studies in Advanced Mathematics 137 and 138)ByCamil Muscalu and Wilhelm Schlag

Author(s):  
David Salinger
2009 ◽  
Author(s):  
Tullio Ceccherini-Silberstein ◽  
Fabio Scarabotti ◽  
Filippo Tolli

2009 ◽  
Author(s):  
Camil Muscalu ◽  
Wilhelm Schlag
Keyword(s):  

Author(s):  
José Ferreirós

This book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, the book uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results. Describing a historically oriented, agent-based philosophy of mathematics, the book shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. It argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. It demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty. Offering a wealth of philosophical and historical insights, the book challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.


2005 ◽  
Vol 11 (4) ◽  
pp. 517-525
Author(s):  
Juris Steprāns

AbstractIt is shown to be consistent with set theory that every set of reals of size ℵ1 is null yet there are ℵ1 planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure theoretic pigeonhole principle.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document