The Existence of Continuous Lattice Homomorphisms

1962 ◽  
Vol s1-37 (1) ◽  
pp. 60-62
Author(s):  
L. W. Anderson
Positivity ◽  
2021 ◽  
Author(s):  
Anke Kalauch ◽  
Janko Stennder ◽  
Onno van Gaans

AbstractWe focus on two topics that are related to moduli of elements in partially ordered vector spaces. First, we relate operators that preserve moduli to generalized notions of lattice homomorphisms, such as Riesz homomorphisms, Riesz* homomorphisms, and positive disjointness preserving operators. We also consider complete Riesz homomorphisms, which generalize order continuous lattice homomorphisms. Second, we characterize elements with a modulus by means of disjoint elements and apply this result to obtain moduli of functionals and operators in various settings. On spaces of continuous functions, we identify those differences of Riesz* homomorphisms that have a modulus. Many of our results for pre-Riesz spaces of continuous functions lead to results on order unit spaces, where the functional representation is used.


1984 ◽  
Vol 185 (4) ◽  
pp. 567-571 ◽  
Author(s):  
Wolfgang Arendt

2017 ◽  
Vol 18 ◽  
pp. 48-57 ◽  
Author(s):  
Martin Eichenhofer ◽  
Joanna C.H. Wong ◽  
Paolo Ermanni

2018 ◽  
Vol 17 (05) ◽  
pp. 1850094 ◽  
Author(s):  
Mauricio Medina Bárcenas ◽  
José Ríos Montes ◽  
Angel Zaldívar Corichi

Given a complete modular meet-continuous lattice [Formula: see text], an inflator on [Formula: see text] is a monotone function [Formula: see text] such that [Formula: see text] for all [Formula: see text]. If [Formula: see text] is the set of all inflators on [Formula: see text], then [Formula: see text] is a complete lattice. Motivated by preradical theory, we introduce two operators, the totalizer and the equalizer. We obtain some properties of these operators and see how they are related to the structure of the lattice [Formula: see text] and with the concept of dimension.


Sign in / Sign up

Export Citation Format

Share Document