scholarly journals On Cox rings of K3 surfaces

2010 ◽  
Vol 146 (4) ◽  
pp. 964-998 ◽  
Author(s):  
Michela Artebani ◽  
Jürgen Hausen ◽  
Antonio Laface

AbstractWe study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-symplectic involution that have Picard number 2 to 5 or occur as double covers of del Pezzo surfaces.

2009 ◽  
Vol 3 (7) ◽  
pp. 729-761 ◽  
Author(s):  
Damiano Testa ◽  
Anthony Várilly-Alvarado ◽  
Mauricio Velasco

2021 ◽  
Vol 565 ◽  
pp. 598-626
Author(s):  
Michela Artebani ◽  
Claudia Correa Deisler ◽  
Antonio Laface
Keyword(s):  

2019 ◽  
Vol 30 (12) ◽  
pp. 1950068
Author(s):  
Andrey Trepalin

Let [Formula: see text] be any field of characteristic zero, [Formula: see text] be a del Pezzo surface and [Formula: see text] be a finite subgroup in [Formula: see text]. In this paper, we study when the quotient surface [Formula: see text] can be non-rational over [Formula: see text]. Obviously, if there are no smooth [Formula: see text]-points on [Formula: see text] then it is not [Formula: see text]-rational. Therefore, under assumption that the set of smooth [Formula: see text]-points on [Formula: see text] is not empty we show that there are few possibilities for non-[Formula: see text]-rational quotients. The quotients of del Pezzo surfaces of degree [Formula: see text] and greater are considered in the author’s previous papers. In this paper, we study the quotients of del Pezzo surfaces of degree [Formula: see text]. We show that they can be non-[Formula: see text]-rational only for the trivial group or cyclic groups of order [Formula: see text], [Formula: see text] and [Formula: see text]. For the trivial group and the group of order [Formula: see text], we show that both [Formula: see text] and [Formula: see text] are not [Formula: see text]-rational if the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. For the groups of order [Formula: see text] and [Formula: see text], we construct examples of both [Formula: see text]-rational and non-[Formula: see text]-rational quotients of both [Formula: see text]-rational and non-[Formula: see text]-rational del Pezzo surfaces of degree [Formula: see text] such that the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. As a result of complete classification of non-[Formula: see text]-rational quotients of del Pezzo surfaces we classify surfaces that are birationally equivalent to quotients of [Formula: see text]-rational surfaces, and obtain some corollaries concerning fields of invariants of [Formula: see text].


2017 ◽  
Vol 480 ◽  
pp. 309-331
Author(s):  
Jinhyung Park ◽  
Joonyeong Won

2007 ◽  
Vol 316 (2) ◽  
pp. 777-801 ◽  
Author(s):  
Mike Stillman ◽  
Damiano Testa ◽  
Mauricio Velasco

Author(s):  
Hamid Ahmadinezhad

AbstractWe develop some concrete methods to build Sarkisov links, starting from Mori fibre spaces. This is done by studying low rank Cox rings and their properties. As part of this development, we give an algorithm to construct explicitly the coarse moduli space of a toric Deligne–Mumford stack. This can be viewed as the generalisation of the notion of well-formedness for weighted projective spaces to homogeneous coordinate ring of toric varieties. As an illustration, we apply these methods to study birational transformations of certain fibrations of del Pezzo surfaces over


2018 ◽  
Vol 2020 (20) ◽  
pp. 7306-7346
Author(s):  
Kazuhiro Ito

Abstract We study the good reduction modulo $p$ of $K3$ surfaces with complex multiplication. If a $K3$ surface with complex multiplication has good reduction, we calculate the Picard number and the height of the formal Brauer group of the reduction. Moreover, if the reduction is supersingular, we calculate its Artin invariant under some assumptions. Our results generalize some results of Shimada for $K3$ surfaces with Picard number $20$. Our methods rely on the main theorem of complex multiplication for $K3$ surfaces by Rizov, an explicit description of the Breuil–Kisin modules associated with Lubin–Tate characters due to Andreatta, Goren, Howard, and Madapusi Pera, and the integral comparison theorem recently established by Bhatt, Morrow, and Scholze.


Sign in / Sign up

Export Citation Format

Share Document