Numerical Calculation of the Fully Developed Turbulent Flow in an Axially Rotating Pipe With a Second-Moment Closure

1998 ◽  
Vol 120 (2) ◽  
pp. 274-279 ◽  
Author(s):  
K.-J. Rinck ◽  
H. Beer

The effect of axial tube rotation on the fully developed pipe flow is analyzed by a low-Reynolds-number turbulence closure and compared with experimental results. A flow which is initially turbulent is stabilized by the rotation leading to a laminarized mean axial velocity distribution. The applied second-moment closure reveals an encouraging ability to capture this phenomenon as well as other features of the mentioned flow configuration. The “rapid” part of the pressure-strain correlation model is found to have a significant influence on the numerical results and seems to be the key for further improvements concerning highly swirling flows.

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 825-831
Author(s):  
Dirk G. Pfuderer ◽  
Claus Eifert ◽  
Johannes Janicka

1999 ◽  
Author(s):  
Hamn-Ching Chen ◽  
Gengsheng Wei ◽  
Je-Chin Han

Abstract A multiblock Favre-Averaged Navier-Stokes (FANS) method has been developed in conjunction with a chimera domain decomposition technique for investigation of flat surface, discrete-hole film cooling performance. The finite-analytic method solves the FANS equations in conjunction with a near-wall second-order Reynolds stress (second-moment) closure model and a two-layer k-ε model. Comparisons of flow fields and turbulence quantities with experimental data clearly demonstrate the capability of the near-wall second-moment closure model for accurate resolution of the complex flow interaction bewteen the coolant jet and the mainstream. The near-wall second-moment anisotropic model provides better agreement in adiabatic film effectiveness prediction than the two-layer k-ε model.


Sign in / Sign up

Export Citation Format

Share Document