A Study of Rotor Cavities and Heat Transfer in a Cooling Process in a Gas Turbine

1994 ◽  
Vol 116 (2) ◽  
pp. 333-338 ◽  
Author(s):  
R. S. Amano ◽  
K. D. Wang ◽  
V. Pavelic

A high-temperature flow through a gas turbine produces a high rate of turbulent heat transfer between the fluid flow field and the turbine components. The heat transfer process through rotor disks causes thermal stress due to the thermal gradient just as the centrifugal force causes mechanical stresses; thus an accurate analysis for the evaluation of thermal behavior is needed. This paper presents a numerical study of thermal flow analysis in a two-stage turbine in order to understand better the detailed flow and heat transfer mechanisms through the cavity and the rotating rotor-disks. The numerical computations were performed to predict thermal fields throughout the rotating disks. The method used in this paper is the “segregation” method, which requires a much smaller number of grids than actually employed in the computations. The results are presented for temperature distributions through the disk and the velocity fields, which illustrate the interaction between the cooling air flow and gas flow created by the disk rotation. The temperature distribution in the disks shows a reasonable trend. The numerical method developed in this study shows that it can be easily adapted for similar computations for air cooling flow patterns through any rotating blade disks in a gas turbine.

Author(s):  
R. S. Amano ◽  
V. Pavelic

A high temperature flow through a gas-turbine produces a high rate of turbulent heat transfer between the fluid flow field and the turbine components. The heat transfer process through rotor disks causes thermal stress due to the thermal gradient as well as the centrifugal force causes mechanical stresses; thus an accurate analysis for the evaluation of thermal behavior is needed. This paper presents a numerical study of thermal flow analysis in a two-stage turbine in order to better understand the detailed flow and heat transfer mechanisms through the cavity and the rotating rotor-disks. The numerical computations were performed to predict thermal fields throughout the rotating disks. The method used in this paper is the ‘segregation’ method which requires a much smaller number of grids than actually employed in the computations. The results are presented for temperature distributions through the disk and the velocity fields which illustrate the interaction between the cooling air flow and gas flow created by the disk rotation. The temperature distribution in the disks shows a reasonable trend. The numerical method developed in this study shows that it can be easily adapted for similar computations for air cooling flow patterns through any rotating blade disks in a gas turbine.


1987 ◽  
Vol 109 (1) ◽  
pp. 62-67 ◽  
Author(s):  
R. S. Amano ◽  
A. Bagherlee ◽  
R. J. Smith ◽  
T. G. Niess

A numerical study is performed examining flow and heat transfer characteristics in a channel with periodically corrugated walls. The complexity of the flow in this type of channel is demonstrated by such phenomena as flow impingement on the walls, separation at the bend corners, flow reattachment, and flow recirculation. Because of the strong nonisotropic nature of the turbulent flow in the channel, the full Reynolds-stress model was employed for the evaluation of turbulence quantities. Computations are made for several different corrugation periods and for different Reynolds numbers. The results computed by using the present model show excellent agreement with experimental data for mean velocities, the Reynolds stresses, and average Nusselt numbers. The study was further extended to a channel flow where fins are inserted at bends in the channel. It was observed that the insertion of fins in the flow passage has a visible effect on flow patterns and skin friction along the channel wall.


Sign in / Sign up

Export Citation Format

Share Document