vortex generator
Recently Published Documents


TOTAL DOCUMENTS

933
(FIVE YEARS 252)

H-INDEX

40
(FIVE YEARS 8)

Author(s):  
Petrus Setyo Prabowo ◽  
◽  
Stefan Mardikus ◽  
Ewaldus Credo Eukharisto ◽  

Vortex generators are addition surface that can increase heat transfer area and change the fluid flow characteristics of the working fluid to increase heat transfer coefficient. The use of vortex generators produces longitudinal vortices that can increase the heat transfer performance because of the low pressure behind vortex generators. This investigation used delta winglet vortex generator that was combined with rectangular vortex generator to Reynold numbers ranging 6,000 to 10,000. The parameters of Nusselt number, friction factor, velocity vector and temperature distribution will be evaluated.


2021 ◽  
Vol 13 (2) ◽  
pp. 68-78
Author(s):  
عباس فاضل محمود ◽  

This paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles. The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into account the interference between two pairs of VGs. The effect of the changing in (h- the height of vortex generator, d- the average distance between tow vortex generators) on the thickness of the flat plate boundary layer and the drag coefficients has been studied for triangular vortex generator. The measurements of the vortex generator have been changed to determine the optimum boundary layer thickness and the change in drag coefficients. An experiment was done at an average free stream velocity, (U∞,) of 28 m/s. The experiment was conducted in the wind tunnel UTAD-2 University (NAU) Kiev, Ukraine.


2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe

Abstract In the present research work, effect of airfoil vortex generator on performance and stability of transonic compressor stage is investigated through CFD simulations. In turbomachines vortex generators are used to energize boundary and generated vortex is made to interact with tip leakage flow and secondary flow vortices formed in rotor and stator blade passage. In the present numerical investigation symmetrical airfoil vortex generator is placed on rotor casing surface close to leading edge, anticipating that vortex generated will be able to disturb tip leakage flow and its interaction with rotor passage core flow. Six different vortex generator configuration are investigated by varying distance between vortex generator trailing edge and rotor leading edge. Particular vortex generator configuration shows maximum improvement of stall margin and operating range by 5.5% and 76.75% respectively. Presence of vortex generator alters flow blockage by modifying flow field in rotor tip region and hence contributes to enhancement of stall margin. As a negative effect, interaction of vortex generator vortices and casing causes surface friction and high entropy generation. As a result compressor stage pressure ratio and efficiency decreases.


Sign in / Sign up

Export Citation Format

Share Document