Optimal Bounded Control of Linear Sampled-Data Systems With Quadratic Loss

1965 ◽  
Vol 87 (1) ◽  
pp. 135-141 ◽  
Author(s):  
G. W. Deley ◽  
G. F. Franklin

A method is presented for the computation of optimal control for linear sampled-data systems when the control variable is a bounded scalar. It is shown that for this problem the optimal control is a piecewise linear function of the state and may be computed by piecewise iteration of suitable recurrence relations. The optimal control is presented in terms of the control coefficients (matrices) and the regions to which they apply. No solution other than computer storage is suggested for the synthesis of these controls. In the second section of the paper, it is shown that the method applies with trivial modification to the random-input, random-observation noise case. The optimal control law has the same form as the deterministic case with the conditional expectation used in the control law in place of the stale itself. A simple deterministic example computed on an IBM 1620 is presented. As might be expected, the computer capacity required for the problem is intermediate between the unbounded control case, where the control is linear, and more general problems.

1964 ◽  
Vol 86 (1) ◽  
pp. 51-60 ◽  
Author(s):  
R. E. Kalman

The purpose of this paper is to formulate, study, and (in certain cases) resolve the Inverse Problem of Optimal Control Theory, which is the following: Given a control law, find all performance indices for which this control law is optimal. Under the assumptions of (a) linear constant plant, (b) linear constant control law, (c) measurable state variables, (d) quadratic loss functions with constant coefficients, (e) single control variable, we give a complete analysis of this problem and obtain various explicit conditions for the optimality of a given control law. An interesting feature of the analysis is the central role of frequency-domain concepts, which have been ignored in optimal control theory until very recently. The discussion is presented in rigorous mathematical form. The central conclusion is the following (Theorem 6): A stable control law is optimal if and only if the absolute value of the corresponding return difference is at least equal to one at all frequencies. This provides a beautifully simple connecting link between modern control theory and the classical point of view which regards feedback as a means of reducing component variations.


1965 ◽  
Vol 87 (1) ◽  
pp. 81-89 ◽  
Author(s):  
C. D. Johnson ◽  
W. M. Wonham

In a series of papers [1, 2], A. M. Letov discussed an optimal regulator problem for a linear plant with bounded control variable and quadratic performance index. This problem was also discussed by Chang [3]. Krasovskii and Letov observed later [4] that the solution proposed in [1, 2, and 3] may be correct only for special choices of the initial value of the state vector. In the present note, further aspects of the solution in the general case are described and three examples are given. The possible existence of a regime of unsaturated-nonlinear optimal control is demonstrated. The presence of this regime in the optimal control law was apparently overlooked in [1–4].


1970 ◽  
Vol 58 (8) ◽  
pp. 1295-1297 ◽  
Author(s):  
J.J. Grainger ◽  
K.G. Pandy

Sign in / Sign up

Export Citation Format

Share Document