Dynamics and Stability Prediction of Five-Axis Flat-End Milling

Author(s):  
YaoAn Lu ◽  
Ye Ding ◽  
LiMin Zhu

The tool orientation of a flat-end cutter, determined by the lead and tilt angles of the cutter, can be optimized to increase the machining strip width. However, few studies focus on the effects of tool orientation on the five-axis milling process stability with flat-end cutters. Stability prediction starts with cutting force prediction, and the cutting force prediction is affected by the cutter-workpiece engagement (CWE). The engagement geometries occur between the flat-end cutter and the in-process workpiece (IPW) are complicated in five-axis milling, making the stability analysis for five-axis flat-end milling difficult. The robust discrete vector method (DVM) is adopted to identify the CWE for flat-end millings, and it can be extended to apply to general cutter millings. The milling system is then modeled as a two-degrees-of-freedom spring-mass-damper system with the predicted cutting forces. Thereafter, a general formulation for the dynamic milling system is developed considering the regenerative effect and the mode coupling effect simultaneously. Finally, an enhanced numerical integration method (NIM) is developed to predict the stability limits in flat-end milling with different tool orientations. Effectiveness of the strategy is validated by conducting experiments on five-axis flat-end milling.

2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


2013 ◽  
Vol 26 (4) ◽  
pp. 1057-1063 ◽  
Author(s):  
Baohai Wu ◽  
Xue Yan ◽  
Ming Luo ◽  
Ge Gao

Procedia CIRP ◽  
2012 ◽  
Vol 1 ◽  
pp. 663-668 ◽  
Author(s):  
Xialin Man ◽  
Deyao Ren ◽  
Shuji Usui ◽  
Cody Johnson ◽  
Troy D. Marusich

2011 ◽  
Vol 223 ◽  
pp. 85-92 ◽  
Author(s):  
Balázs Tukora ◽  
Tibor Szalay

In this paper a new method for instantaneous cutting force prediction is presented, in case of sculptured surface milling. The method is executed in a highly parallel manner by the general purpose graphics processing unit (GPGPU). As opposed to the accustomed way, the geometric information of the work piece-cutter touching area is gained directly from the multi-dexel representation of the work-piece, which lets us compute the forces in real-time. Furthermore a new procedure is introduced for the determination of the cutting force coefficients on the basis of measured instantaneous or average orthogonal cutting forces. This method can determine the shear and ploughing coefficients even while the cutting geometry is continuously altering, e.g. in the course of multi-axis machining. In this way the cutting forces can be predicted during the machining process without a priori knowledge of the coefficients. The proposed methods are detailed and verified in case of ball-end milling, but the model also enables the applying of general-end cutters.


Sign in / Sign up

Export Citation Format

Share Document