end milling process
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 53)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012209
Author(s):  
Natarajan Tamiloli ◽  
Velpuri Venkat Raman

Abstract The goal of this observes is to take a look at the effect of machining parameters on surface roughness in end milling. An incipient technique in modelling surface roughness that makes use of synthetic perspicacity implements is defined in this paper. This paper fixates on growing empirical models utilizing fuzzy logic and regression analysis. The values of surface roughness presaged with the aid of using those fashions are then in comparison. The effects confirmed that the proposed gadget can considerably boom the precision of the product profile whilst in comparison to the traditional approaches, like regression analysis. The effects designate that the regression modelling method may be effectively applied for the presage of surface roughness in dry machining.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-12
Author(s):  
Sami Abbas Hammood

The objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response were spindle speed and cutting tool with contribution percentage (52.75%, 24%), respectively. In addition, the optimum combination of end milling process parameters was then validated by performing confirmation tests to determine the improvement in multi-response outputs. The confirmation tests obtained a minimum (surface roughness and micro-hardness) and maximum metal removal rate with grey relational grade of 0.784 and improvement percentage of 2.3%.


2021 ◽  
Vol 20 (2) ◽  
pp. 27
Author(s):  
L. R. R. Da Silva ◽  
A. R. Machado

In the search for more energy-efficient internal combustion engines, the automotive companies keep pushing the working temperatures and pressures of the engines, leading to more extreme working conditions and so the necessity of new materials. Among the most promising materials for the new generations of engines is the compacted graphite cast iron, which is more wear-resistant than aluminum and tougher than gray cast iron. However, this combination of properties also leads to decreased machinability, increasing production costs and, therefore, their market competitiveness. This paper evaluated the correlation of mechanical and metallurgical properties and the cutting power and surface roughness of three grades of compacted graphite cast iron with the cutting temperature in the end milling process under different two different feed rates and cutting speeds. This analysis showed that the temperatures near the cutting zone are closely correlated to the material's mechanical properties, machining power, and resulting roughness. These results indicate that thermographic images are a good indicator of the overall correlation between the changes in material properties and the most usual machinability output parameters. 


Author(s):  
Wahaizad Safiei ◽  
Md Mustafizur Rahman ◽  
Ahmad Razlan Yusoff ◽  
Wajiha Tasnim ◽  
Zetty Akhtar Abd Malek

As an alternative to conventional metal working fluid in the end milling process, a combination of newly developed tri-hybrid SiO2-Al2O3-ZrO2 in aqueous-based nanofluid was delivered to the cutting zone using the MQL technique. The liquid has excellent thermal-rheology properties that can offer effective cooling and lubricating during the process. The tri-hybrid nanofluid application is environmentally safe, thus promoting sustainable manufacturing compared to the conventional working fluid. In this experimental study, the cutting forces were investigated comprehensively. Tri-hybrid nanofluid presents in atomizing conditions using the minimum quantity lubricant (MQL) technique at the cutting zone. Industrial standard inserts, namely uncoated, CVD TiCN-Al2O3 and PVD TiAlTaN tungsten carbide used in the experiments. End milling process variables were cutting speed, feed rate, depth of cut, MQL flow rate and nanofluid concentrations. The response data were analyzed statistically based on the design of experiment and regression models were developed for each response according to response surface methodology. Higher cutting force was observed at extreme machining parameters, which regards to higher material removal rate. During the cutting process of Aluminum Alloy 6061-T6, the cutting force, Fr measured was between 16 Newton and 30 Newton. The cutting force in Y-axes (Fy) demonstrates a higher magnitude than others due to the cutting feed of AA6061-T6 in the Y direction. CVD TiCN-Al2O3 tungsten carbide exhibited higher cutting force (Fy) due to coated hardness and tool failures mechanism on both rake and flank face as the wear phenomenon will increase the land contact area. In summary, the resultant cutting force (Fr) was recorded below 30 Newton, indicating the significant improvement in the end milling process. For future experimental works, the cutting force can be explored by considering different nanofluids, extreme machining conditions and brittle material.


Sign in / Sign up

Export Citation Format

Share Document