scholarly journals Synthesis of Bistable Periodic Structures Using Topology Optimization and a Genetic Algorithm

Author(s):  
Jitendra Prasad ◽  
Alejandro Diaz

Formulations for the automatic synthesis of two-dimensional bistable, compliant periodic structures are presented, based on standard methods for topology optimization. The design space is parameterized using non-linear beam elements and a ground structure approach. A performance criterion is suggested, based on characteristics of the load-deformation curve of the compliant structure. A genetic algorithm is used to find candidate solutions. A numerical implementation of this methodology is discussed and illustrated using a simple example.

2005 ◽  
Vol 128 (6) ◽  
pp. 1298-1306 ◽  
Author(s):  
J. Prasad ◽  
A. R. Diaz

A formulation for the automatic synthesis of two-dimensional bistable, compliant periodic structures is presented, based on standard methods for topology optimization. The design space is parametrized using nonlinear beam elements and a ground structure approach. A performance criterion is suggested, based on characteristics of the load-deformation curve of the compliant structure. A genetic algorithm is used to find candidate solutions. A numerical implementation of this methodology is discussed and illustrated using simple examples.


2013 ◽  
Vol 12 (1) ◽  
pp. 091-098
Author(s):  
Karol Bołbotowski ◽  
Michał Knauff ◽  
Tomasz Sokół

Although Strut and Tie models are often used in practical design due to their apparent concept based on truss analysis, the creation of a model consistent with behaviour of the real structure is not an easy task. Frame corner model considered in the paper and presented in code [7] and article [8] exemplifies the problem. The authors proposed a method of automatic generating of ST models by making use of truss topology optimization (volume minimization problem). The method is based on classical ground structure approach. The authors introduced a method of including the cost of nodes in the objective function, which allowed to obtain solutions consisting of rationally small number of bars (unlike Michell’s structures). Moreover, algorithms ensuring consistency with Eurocode requirements were developed. The method was implemented in computer program. With the use of the software the authors proposed an alternative ST model for the frame corner, which requires considerably less reinforcement steel in comparison with the model suggested by the code. The versatility of the program was well proven in several other examples of plane stress problems in reinforced concrete design.


Sign in / Sign up

Export Citation Format

Share Document