SCR Control System Design Based on On-Line Radial Basis Function and Backpropagation Neural Networks
Because of its high NOx reduction efficiency, selective catalyst reduction (SCR) has become an indispensable part of diesel vehicle aftertreatment. This paper presents a control strategy for SCR systems that is based on an on-line radial basis function neural network (RBFNN) and an on-line backpropagation neural network (BPNN). In this control structure, the radial basis function neural network is employed as an estimator to provide Jacobian information for the controller; and the backpropagation neural network is utilized as a controller, which dictates the appropriate urea-solution to be injected into the SCR system. This design is tested by simulations based in Gamma Technologies software (GT-ISE) as well as MATLAB Simulink. The results show that the RBF-BPNN control technique achieves a 1–5 % higher NOx reduction efficiency than a PID controller.