Computations of Higher Class Solutions of Partial Differential Equations

Author(s):  
K. S. Surana ◽  
M. A. Bona

Abstract This paper presents a new computational strategy, computational framework and mathematical framework for numerical computations of higher class solutions of differential and partial differential equations. The approach presented here utilizes ‘strong forms’ of the governing differential equations (GDE’s) and least squares approach in constructing the integral form. The conventional, or currently used, approaches seek the convergence of a solution in a fixed (order) space by h, p or hp-adaptive processes. The fundamental point of departure in the proposed approach is that we seek convergence of the computed solution by changing the orders of the spaces of the basis functions. With this approach convergence rates much higher than those from h,p–processes are achievable and the progressively computed solutions converge to the ‘strong’ i.e. ‘theoretical’ solutions of the GDE’s. Many other benefits of this approach are discussed and demonstrated. Stationary and time-dependant convection-diffusion and Burgers equations are used as model problems.

Author(s):  
K. S. Surana ◽  
Ali R. Ahmadi

Abstract This paper presents a new computational strategy along with a computational and mathematical framework for computing non-weak numerical solutions of stationary and time dependent partial differential equations. This approach utilizes strong form of the governing differential equations (GDE) and least squares approach in constructing the integral form. This new proposed approach is applied to one dimensional transient gasdynamics equation in Eulerian frame of reference using ρ, u, T as dependent variables. The currently used finite element approaches seek convergence of a solution in a fixed order space by h, p, or hp-adaptive processes. The fundamental point of departure in the proposed approach is that we seek the convergence of the computed converged solution over the spaces of different orders containing the basis functions. With this approach, dramatically higher convergence rates than those obtained for h, p, or hp-processes are achievable and the sequence of progressively converged solutions over the spaces of progressively increasing order in fact converge to the strong solution (analytical or theoretical) of the partial differential equation. It is demonstrated using one-dimensional transient Navier-Stokes equations for compressible fluid flow in Eulerian frame of reference, that in the presence of physical diffusion and dissipation, our computed solutions have exactly the same characteristics as the strong solutions. Riemann shock tube is used as a model problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Don Liu ◽  
Qin Chen ◽  
Yifan Wang

A system of coupled nonlinear partial differential equations with convective and dispersive terms was modified from Boussinesq-type equations. Through a special formulation, a system of nonlinear partial differential equations was solved alternately and explicitly in time without linearizing the nonlinearity. Coupled compact schemes of sixth order accuracy in space were developed to obtain numerical solutions. Within couple compact schemes, variables and their first and second derivatives were solved altogether. The sixth order accuracy in space is achieved with a memory-saving arrangement of state variables so that the linear system is banded instead of blocked. This facilitates solving very large systems. The efficiency, simplicity, and accuracy make this coupled compact method viable as variational and weighted residual methods. Results were compared with exact solutions which were obtained via devised forcing terms. Error analyses were carried out, and the sixth order convergence in space and second order convergence in time were demonstrated. Long time integration was also studied to show stability and error convergence rates.


2021 ◽  
pp. 109963622199389
Author(s):  
Muzamal Hussain ◽  
Muhammad N Naeem

Shell motion equations are framed with first order shell theory of Love. Vibration investigation of fluid-filled three layered cylindrical shells is studied here. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled and uncoupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. A cylindrical shell is immersed in a fluid which is a non-viscous one. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel’s functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations.


2017 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Pipit Pratiwi Rahayu

Measureable function space and its norm with integral form has been known, one of which is Lebegsue Space and Sobolev Space. In applied Mathematics like in finding solution of partial differential equations, that two spaces is soo usefulness. Sobolev space is subset of Lebesgue space, its mean if we have a function that element of Sobolev Space then its element of Lebesgue space. But the converse of this condition is not applicable. In this research, we will give an example to shows that there is a function element of Lebesgue space but not element of Sobolev space


Author(s):  
Ehsan Kharazmi ◽  
Mohsen Zayernouri

Abstract Fractional calculus provides a rigorous mathematical framework to describe anomalous stochastic processes by generalizing the notion of classical differential equations to their fractional-order counterparts. By introducing the fractional orders as uncertain variables, we develop an operator-based uncertainty quantification framework in the context of stochastic fractional partial differential equations (SFPDEs), subject to additive random noise. We characterize different sources of uncertainty and then, propagate their associated randomness to the system response by employing a probabilistic collocation method (PCM). We develop a fast, stable, and convergent Petrov–Galerkin spectral method in the physical domain in order to formulate the forward solver in simulating each realization of random variables in the sampling procedure.


Sign in / Sign up

Export Citation Format

Share Document