Large Eddy Simulation of the Flow Past a Circular Cylinder at Super-Critical Reynolds Numbers

Author(s):  
Mohammad H. B. Ahmadi ◽  
Zhiyin Yang

Abstract Turbulent flow past a circular cylinder at super-critical Reynolds numbers is simulated using large eddy simulation in this study. A novel combination of O- and H-grid structures is used to reduce mesh cells and, in turn, the computational cost. To investigate the influence of sub-grid scale (SGS) models on the accuracy of simulations, four different SGS models are applied to simulate the flow. In this study, the effect of mesh resolution near the wall on the accuracy of results is also evaluated by applying different y+ values at the wall. The results show that due to the complexity of the flow around the cylinder particularly at high Reynolds numbers, using very high resolution mesh near the cylinder wall, can not guarantee the accuracy of results and other parameters such as mesh resolutions at the top and bottom shear layers and the wake shortly behind the cylinder should be considered appropriately.

1997 ◽  
Vol 119 (4) ◽  
pp. 219-225 ◽  
Author(s):  
X. Lu ◽  
C. Dalton ◽  
J. Zhang

A steady approach flow around a circular cylinder is investigated by using a large eddy simulation (LES) with the Smagorinsky subgrid-scale model. A second-order accurate in time fractional-step method and a combined finite-difference/spectral approximation are employed to solve the filtered three-dimensional incompressible Navier-Stokes equations. To demonstrate the viability and accuracy of the method, we present results at Reynolds numbers of 100, 3 × 103, 2 × 104, and 4.42 × 104. At Re = 100, the physical flow is two-dimensional and the calculation is done without use of the LES method. For the higher values of Re, the flow in the wake is three-dimensional and turbulent and the LES method is necessary to describe the flow accurately. Calculated values of lift and drag coefficients and Strouhal number are in good agreement with the experimentally determined values at all of the Reynolds numbers for which calculation was done.


Sign in / Sign up

Export Citation Format

Share Document