scale model
Recently Published Documents





2022 ◽  
Vol 238 ◽  
pp. 111930
Xiaoyu Ju ◽  
Kota Shiino ◽  
Tsuneyoshi Matsuoka ◽  
Takuya Yamazaki ◽  
Yuji Nakamura

2022 ◽  
Vol 8 (1) ◽  
pp. 1-23
Raymond Leung ◽  
Alexander Lowe ◽  
Anna Chlingaryan ◽  
Arman Melkumyan ◽  
John Zigman

This article presents a Bayesian framework for manipulating mesh surfaces with the aim of improving the positional integrity of the geological boundaries that they seek to represent. The assumption is that these surfaces, created initially using sparse data, capture the global trend and provide a reasonable approximation of the stratigraphic, mineralization, and other types of boundaries for mining exploration, but they are locally inaccurate at scales typically required for grade estimation. The proposed methodology makes local spatial corrections automatically to maximize the agreement between the modeled surfaces and observed samples. Where possible, vertices on a mesh surface are moved to provide a clear delineation, for instance, between ore and waste material across the boundary based on spatial and compositional analysis using assay measurements collected from densely spaced, geo-registered blast holes. The maximum a posteriori (MAP) solution ultimately considers the chemistry observation likelihood in a given domain. Furthermore, it is guided by an a priori spatial structure that embeds geological domain knowledge and determines the likelihood of a displacement estimate. The results demonstrate that increasing surface fidelity can significantly improve grade estimation performance based on large-scale model validation.

2022 ◽  
Vol 135 ◽  
pp. 315-321
Wen-Jing Zheng ◽  
Zi He ◽  
Da-Zhi Ding ◽  
Fan Ding ◽  
Ru-Shan Chen

2022 ◽  
Vol 46 ◽  
pp. 103801
Salman Qadir ◽  
Guang Li ◽  
Zheng Chen

2022 ◽  
Vol 55 (1) ◽  
Michel Giorgi ◽  
Yves Berchadsky

This article presents the design and manufacture of an automated scale model of a four-circle single-crystal X-ray diffractometer that can be used for scientific dissemination. The purpose of this device is to reach out to the wider public and students to introduce them in an entertaining way to one of the laboratory apparatuses to which they do not usually have access, to talk to them about crystallography in the broadest sense, to develop concepts in various fields of science and technology, and to initiate interest and discussions. The main technical aspects of the project are described, with the expectation that such an approach could be useful to anyone involved in scientific dissemination and could be developed for other laboratory equipment and other disciplines. This kind of device can also be the subject of scientific and technological projects in close collaboration with educational institutions.

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Pouya Shojaei ◽  
Riccardo Scazzosi ◽  
Mohamed Trabia ◽  
Brendan O’Toole ◽  
Marco Giglio ◽  

While deposited thin film coatings can help enhance surface characteristics such as hardness and friction, their effective incorporation in product design is restricted by the limited understanding of their mechanical behavior. To address this, an approach combining micro-indentation and meso/micro-scale simulations was proposed. In this approach, micro-indentation testing was conducted on both the coating and the substrate. A meso-scale uniaxial compression finite element model was developed to obtain a material model of the coating. This material model was incorporated within an axisymmetric micro-scale model of the coating to simulate the indentation. The proposed approach was applied to a Ti/SiC metal matrix nanocomposite (MMNC) coating, with a 5% weight of SiC nanoparticles deposited over a Ti-6Al-4V substrate using selective laser melting (SLM). Micro-indentation testing was conducted on both the Ti/SiC MMNC coating and the Ti-6Al-4V substrate. The results of the meso-scale finite element indicated that the MMNC coating can be represented using a bi-linear elastic-plastic material model, which was incorporated within an axisymmetric micro-scale model. Comparison of the experimental and micro-scale model results indicated that the proposed approach was effective in capturing the post-indentation behavior of the Ti/SiC MMNC coating. This methodology can also be used for studying the response of composite coatings with different percentages of reinforcements.

2022 ◽  
Vol 54 (1) ◽  
pp. 015502
W A McMullan

Abstract This paper assesses the prediction of inert tracer gas dispersion within a cavity of height (H) 1.0 m, and unity aspect ratio, using large Eddy simulation (LES). The flow Reynolds number was 67 000, based on the freestream velocity and cavity height. The flow upstream of the cavity was laminar, producing a cavity shear layer which underwent a transition to turbulence over the cavity. Three distinct meshes are used, with grid spacings of H / 100 (coarse), H / 200 (intermediate), and H / 400 (fine) respectively. The Smagorinsky, WALE, and Germano-Lilly subgrid-scale models are used on each grid to quantify the effects of subgrid-scale modelling on the simulated flow. Coarsening the grid led to small changes in the predicted velocity field, and to substantial over-prediction of the tracer gas concentration statistics. Quantitative metric analysis of the tracer gas statistics showed that the coarse grid simulations yielded results outside of acceptable tolerances, while the intermediate and fine grids produced acceptable output. Interrogation of the fluid dynamics present in each simulation showed that the evolution of the cavity shear layer is heavily influenced by the grid and subgrid scale model. On the coarse and intermediate grids the development of the shear layer is delayed, inhibiting the entrainment and mixing of the tracer gas into the shear layer, reducing the removal of the tracer gas from the cavity. On the fine grid, the shear layer developed more rapidly, resulting in enhanced removal of the tracer gas from the cavity. Concentration probability density functions showed that the fine grid simulations accurately predicted the range, and the most probable value, of the tracer gas concentration towards both walls of the cavity. The results presented in this paper show that the WALE and Germano-Lilly models may be advantageous over the standard Smagorinsky model for simulations of pollutant dispersion in the urban environment.

2022 ◽  
Vol 14 (2) ◽  
pp. 863
Chenchen Li ◽  
Shifu Liu ◽  
Hongduo Zhao ◽  
Yu Tian

To advance the development of piezoelectric energy harvesters, this study designed and manufactured bridge-unit-based and pile-unit-based piezoelectric devices. An indoor material testing system and accelerated pavement test equipment were used to test the electrical performance, mechanical performance, and electromechanical coupling performance of the devices. The results showed that the elastic modulus of the pile structure device was relatively higher than that of the bridge structure device. However, the elastic modulus of the two devices should be improved to avoid attenuation in the service performance and fatigue life caused by the stiffness difference. Furthermore, the electromechanical conversion coefficients of the two devices were smaller than 10% and insensitive to the load magnitude and load frequency. Moreover, the two devices can harvest 3.4 mW and 2.6 mW under the wheel load simulated by the one-third scale model mobile load simulator, thus meeting the supply requirements of low-power sensors. The elastic modulus, electromechanical conversion coefficients, and electric performance of the pile structure device were more reliable than those of the bridge structure device, indicating a better application prospect in road engineering.

Sign in / Sign up

Export Citation Format

Share Document