Solid geometry morphing for specialized optomechanical design using LLIMAS

Author(s):  
Joseph Flaherty ◽  
James Dolan ◽  
Gerhard P. Stoeckel ◽  
Justin J. Rey
Keyword(s):  
1941 ◽  
Vol 25 (264) ◽  
pp. 118
Author(s):  
C. V. Dueell
Keyword(s):  

1939 ◽  
Vol 23 (256) ◽  
pp. 398
Author(s):  
R. H. Macmillan
Keyword(s):  

1870 ◽  
Vol 18 (114-122) ◽  
pp. 122-123

I submit to the Society the present exposition of some of the elementary principles of an Abstract m -dimensional geometry. The science presents itself in two ways,—as a legitimate extension of the ordinary two- and threedimensional geometries; and as a need in these geometries and in analysis generally. In fact whenever we are concerned with quantities connected together in any manner, and which are, or are considered as variable or determinable, then the nature of the relation between the quantities is frequently rendered more intelligible by regarding them (if only two or three in number) as the coordinates of a point in a plane or in space; for more than three quantities there is, from the greater complexity of the case, the greater need of such a representation; but this can only be obtained by means of the notion of a space of the proper dimensionality; and to use such representation, we require the geometry of such space. An important instance in plane geometry has actually presented itself in the question of the determination of the curves which satisfy given conditions: the conditions imply relations between the coefficients in the equation of the curve; and for the better understanding of these relations it was expedient to consider the coefficients as the coordinates of a point in a space of the proper dimensionality. A fundamental notion in the general theory presents itself, slightly in plane geometry, but already very prominently in solid geometry; viz. we have here the difficulty as to the form of the equations of a curve in space, or (to speak more accurately) as to the expression by means of equations of the twofold relation between the coordinates of a point of such curve. The notion in question is that of a k -fold relation,—as distinguished from any system of equations (or onefold relations) serving for the expression of it,—and giving rise to the problem how to express such relation by means of a system of equations (or onefold relations). Applying to the case of solid geometry my conclusion in the general theory, it may be mentioned that I regard the twofold relation of a curve in space as being completely and precisely expressed by means of a system of equations (P = 0, Q = 0, . . T = 0), when no one of the func ions P, Q, ... T, as a linear function, with constant or variable integral coefficients, of the others of them, and when every surface whatever which passes through the curve has its equation expressible in the form U = AP + BQ ... + KT., with constant or variable integral coefficients, A, B ... K. It is hardly necessary to remark that all the functions and coefficients are taken to be rational functions of the coordinates, and that the word integral has reference to the coordinates.


Sign in / Sign up

Export Citation Format

Share Document