Automated texture mapping of 3D city models with images of wide-angle and light small combined digital camera system for UAV

2009 ◽  
Author(s):  
De-zhu Gui ◽  
Zong-jian Lin ◽  
Cheng-cheng Zhang ◽  
Xiao-dong Zhi
2012 ◽  
Vol 1 (4) ◽  
pp. 17-34 ◽  
Author(s):  
Juri Engel ◽  
Jürgen Döllner

Immersive visualization offers an intuitive access to and an effective way of realizing, exploring, and analyzing virtual 3D city models, which are essential tools for effective communication and management of complex urban spatial information in e-planning. In particular, immersive visualization allows for simulating planning scenarios and to receive a close-to-reality impression by both non-expert and expert stakeholders. This contribution is concerned with the main requirements and technical concepts of a system for visualizing virtual 3D city models in large-scale, fully immersive environments. It allows stakeholders ranging from citizens to decision-makers to explore and examine the virtual 3D city model and embedded planning models “in situ.” Fully immersive environments involve a number of specific requirements for both hardware and 3D rendering including enhanced 3D rendering techniques, an immersion-aware, autonomous, and assistive 3D camera system, and a synthetic, immersion-supporting soundscape. Based on these requirements, the authors have implemented a prototypical visualization system that the authors present in this article. The characteristics of fully immersive visualization enable a number of new applications within e-planning workflows and processes, in particular, with respect to public participation, decision support, and location marketing.


Solar Energy ◽  
2017 ◽  
Vol 146 ◽  
pp. 264-275 ◽  
Author(s):  
Laura Romero Rodríguez ◽  
Eric Duminil ◽  
José Sánchez Ramos ◽  
Ursula Eicker

2021 ◽  
Vol 86 ◽  
pp. 101584
Author(s):  
Ankit Palliwal ◽  
Shuang Song ◽  
Hugh Tiang Wah Tan ◽  
Filip Biljecki

IEEE Micro ◽  
1998 ◽  
Vol 18 (3) ◽  
pp. 8-15 ◽  
Author(s):  
E.R. Fossum

2011 ◽  
Vol 48 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Mathias Jahnke ◽  
Jukka Matthias Krisp ◽  
Holger Kumke
Keyword(s):  

2016 ◽  
Vol 22 (50) ◽  
pp. 369-372
Author(s):  
Yoshitami NONOMURA ◽  
Wataru SHIBAYAMA

Sign in / Sign up

Export Citation Format

Share Document