The role of interaural time difference and fundamental frequency difference in the identification of concurrent vowel pairs

1992 ◽  
Vol 91 (6) ◽  
pp. 3579-3581 ◽  
Author(s):  
Trevor M. Shackleton ◽  
Ray Meddis
2010 ◽  
Vol 104 (4) ◽  
pp. 1946-1954 ◽  
Author(s):  
Martin Singheiser ◽  
Brian J. Fischer ◽  
Hermann Wagner

The functional role of the low-frequency range (<3 kHz) in barn owl hearing is not well understood. Here, it was tested whether cochlear delays could explain the representation of interaural time difference (ITD) in this frequency range. Recordings were obtained from neurons in the core of the central nucleus of the inferior colliculus. The response of these neurons varied with the ITD of the stimulus. The response peak shared by all neurons in a dorsoventral penetration was called the array-specific ITD and served as criterion for the representation of a given ITD in a neuron. Array-specific ITDs were widely distributed. Isolevel frequency response functions obtained with binaural, contralateral, and ispilateral stimulation exhibited a clear response peak and the accompanying frequency was called the best frequency. The data were tested with respect to predictions of a model, the stereausis model, assuming cochlear delays as source for the best ITD of a neuron. According to this model, different cochlear delays determined by mismatches between the ipsilateral and contralateral best frequencies are the source for the ITD in a binaural neuron. The mismatch should depend on the best frequency and the best ITD. The predictions of the stereausis model were not fulfilled in the low best-frequency neurons analyzed here. It is concluded that cochlear delays are not responsible for the representation of best ITD in the barn owl.


2003 ◽  
Vol 52-54 ◽  
pp. 321-326 ◽  
Author(s):  
Christian Leibold ◽  
J.Leo van Hemmen

Sign in / Sign up

Export Citation Format

Share Document