scholarly journals Two Iron-Responsive Promoter Elements Control Expression of FOX1 in Chlamydomonas reinhardtii

2007 ◽  
Vol 6 (11) ◽  
pp. 2163-2167 ◽  
Author(s):  
Xiaodong Deng ◽  
Mats Eriksson

ABSTRACT FOX1 encodes an iron deficiency-induced ferroxidase involved in a high-affinity iron uptake system. Mutagenesis analysis of the FOX1 promoter identified two separate iron-responsive elements, FeRE1 (CACACG) and FeRE2 (CACGCG), between positions −87 and −82 and between positions −65 and −60, respectively, and both are needed for induced FOX1 expression under conditions of iron deficiency.

2013 ◽  
Vol 1833 (5) ◽  
pp. 997-1005 ◽  
Author(s):  
Liliana Batista-Nascimento ◽  
Michel B. Toledano ◽  
Dennis J. Thiele ◽  
Claudina Rodrigues-Pousada

2003 ◽  
Vol 132 (2) ◽  
pp. 796-804 ◽  
Author(s):  
Grégory A. Vert ◽  
Jean-François Briat ◽  
Catherine Curie

2001 ◽  
Vol 392 (1) ◽  
pp. 162-167 ◽  
Author(s):  
Maria Paola Paronetto ◽  
Rossella Miele ◽  
Antonella Maugliani ◽  
Marina Borro ◽  
Maria Carmela Bonaccorsi di Patti

2004 ◽  
Vol 3 (2) ◽  
pp. 561-563 ◽  
Author(s):  
Martin Eisendle ◽  
Harald Oberegger ◽  
Rudolf Buttinger ◽  
Paul Illmer ◽  
Hubertus Haas

ABSTRACT Biosynthesis and uptake of siderophores in Aspergillus nidulans are regulated not only by iron availability but also by ambient pH: expression of this high-affinity iron uptake system is elevated by an increase in the ambient pH. Mediation of this regulation by the transcriptional regulator PacC has been confirmed via acidity- and alkalinity-mimicking mutants.


1993 ◽  
Vol 110 (1) ◽  
pp. 41-47 ◽  
Author(s):  
H. Chart ◽  
B. Rowe

SUMMARYStrains ofSalmonella enteritidiswere examined for their ability to remove ferricions from the iron chelating agents ovotransferrin, Desferal and EDDA. Growth ofS. enteritidisphage type (PT) 4 (SE4) in trypticase soy broth containing ovotransferrin resulted in the expression of iron regulated outer membrane proteins (OMPs) of 74. 78 and 81 kDa. and unexpectedly the repression of expression of OMP C. The 38 MDa ‘mouse virulence’ plasmid was not required for the expression of the iron-regulated OMPs (IROMPs). SE4 was able to obtain iron bound to the iron chelator Desferal and EDDA without expressing a high-affinity iron uptake system. Strains ofS. enteritidisbelonging to PTs 7. 8, 13a, 23. 24 and 30 were also able to remove ferric ions from Desferal and EDDA without expressing a high-affinity iron uptake system. We conclude that strains of SE4 possess a high-affinity iron sequestering mechanism that can readily remove iron from ovotransferrin. It is likely that iron limitation, and not iron restriction, is responsible for the bacteriostatic properties of fresh egg whites.


1991 ◽  
Vol 80 (2-3) ◽  
pp. 121-126 ◽  
Author(s):  
Jesús L. Romalde ◽  
Ramón F. Conchas ◽  
Alicia E. Toranzo

Planta ◽  
2009 ◽  
Vol 229 (6) ◽  
pp. 1171-1179 ◽  
Author(s):  
Grégory Vert ◽  
Marie Barberon ◽  
Enric Zelazny ◽  
Mathilde Séguéla ◽  
Jean-François Briat ◽  
...  

2007 ◽  
Vol 6 (10) ◽  
pp. 1841-1852 ◽  
Author(s):  
Michael D. Allen ◽  
José A. del Campo ◽  
Janette Kropat ◽  
Sabeeha S. Merchant

ABSTRACT Previously, we had identified FOX1 and FTR1 as iron deficiency-inducible components of a high-affinity copper-dependent iron uptake pathway in Chlamydomonas. In this work, we survey the version 3.0 draft genome to identify a ferrireductase, FRE1, and two ZIP family proteins, IRT1 and IRT2, as candidate ferrous transporters based on their increased expression in iron-deficient versus iron-replete cells. In a parallel proteomic approach, we identified FEA1 and FEA2 as the major proteins secreted by iron-deficient Chlamydomonas reinhardtii. The recovery of FEA1 and FEA2 from the medium of Chlamydomonas strain CC425 cultures is strictly correlated with iron nutrition status, and the accumulation of the corresponding mRNAs parallels that of the Chlamydomonas FOX1 and FTR1 mRNAs, although the magnitude of regulation is more dramatic for the FEA genes. Like the FOX1 and FTR1 genes, the FEA genes do not respond to copper, zinc, or manganese deficiency. The 5′ flanking untranscribed sequences from the FEA1, FTR1, and FOX1 genes confer iron deficiency-dependent expression of ARS2, suggesting that the iron assimilation pathway is under transcriptional control by iron nutrition. Genetic analysis suggests that the secreted proteins FEA1 and FEA2 facilitate high-affinity iron uptake, perhaps by concentrating iron in the vicinity of the cell. Homologues of FEA1 and FRE1 were identified previously as high-CO2-responsive genes, HCR1 and HCR2, in Chlorococcum littorale, suggesting that components of the iron assimilation pathway are responsive to carbon nutrition. These iron response components are placed in a proposed iron assimilation pathway for Chlamydomonas.


Sign in / Sign up

Export Citation Format

Share Document