secreted proteins
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 193)

H-INDEX

83
(FIVE YEARS 8)

2022 ◽  
Vol 17 ◽  
Author(s):  
Xinyi Liao ◽  
Xiaomei Gu ◽  
Dejun Peng

Background: Many malaria infections are caused by Plasmodium falciparum. Accurate classification of the proteins secreted by the malaria parasite, which are essential for the development of anti-malarial drugs, is essential. Objective: To accurately classify the proteins secreted by the malaria parasite. Methods: Therefore, in order to improve the accuracy of the prediction of plasmodium secreted proteins, we established a classification model MGAP-SGD. MonodikGap features (k=7) of the secreted proteins were extracted, and then the optimal features were selected by the AdaBoost method. Finally, based on the optimal set of secreted proteins, the model was used to predict the secreted proteins using the stochastic gradient descent (SGD) algorithm. Results: Our model uses a 10-fold cross-validation set and independent test set in the stochastic gradient descent (SGD) classifier to validate the model, and the accuracy rates are 98.5859% and 97.973%, respectively. Conclusion: This also fully proves that the effectiveness and robustness of the prediction results of the MGAP-SGD model can meet the prediction needs of the secreted proteins of plasmodium.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12251
Author(s):  
Ayesha Fahim ◽  
Wan Harun Himratul-Aznita ◽  
Puteri Shafinaz Abdul-Rahman ◽  
Mohammad K. Alam

Background Polymicrobial biofilms are notorious for causing intraoral tissue destruction. Streptococcus sanguinis and Streptococcus mitis, commensals of oral cavities, have been found co-existing with C. albicans in resistant oral infections. There is an urgent need to find alternative treatment options. This study aims to assess the efficacy of garlic (G) and bakuchiol (Bk) combination against candida virulent genes and their subsequently secreted proteins. Methods In vitro single species biofilms of C. albicans, and mixed species biofilms formed in combination with streptococci were exposed to bakuchiol and garlic extract (Bk+G). Gene expression of agglutinin-like sequence (ALS1), (ALS3), adhesin-like wall proteins (HWP1) and aspartyl proteinases (SAP5) were determined using qPCR and their subsequent proteins were assessed through Western blotting. Results Virulent genes were significantly downregulated in single species biofilms when they were treated with Bk+G combination. However, Bk+G did not have significant effect on ALS1 and HWP1 gene in polymicrobial biofilms. ALS3 and SAP5 were significantly downregulated in Bk+G treated polymicrobial biofilm. Similar results were portrayed in Western blotting. Conclusion Bk+G combination exhibited antimicrobial effects against single and mixed species biofilms. The findings might provide insights for treating resistant candida infections. This combination could potentially serve as an herbal alternative to traditional antifungals following further research.


Author(s):  
Nicole C. Thunes ◽  
Rachel A. Conrad ◽  
Haitham H. Mohammed ◽  
Yongtao Zhu ◽  
Paul Barbier ◽  
...  

Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and for gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and to other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted ten genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE: Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding ten secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.


2021 ◽  
Vol 22 (22) ◽  
pp. 12262
Author(s):  
Hanna Bräuninger ◽  
Tilo Thottakara ◽  
Jacob Schön ◽  
Svenja Voss ◽  
Vishnu Dhople ◽  
...  

Fibroblasts contribute to approximately 20% of the non-cardiomyocytic cells in the heart. They play important roles in the myocardial adaption to stretch, inflammation, and other pathophysiological conditions. Fibroblasts are a major source of extracellular matrix (ECM) proteins whose production is regulated by cytokines, such as TNF-α or TGF-β. The resulting myocardial fibrosis is a hallmark of pathological remodeling in dilated cardiomyopathy (DCM). Therefore, in the present study, the secretome and corresponding transcriptome of human cardiac fibroblasts from patients with DCM was investigated under normal conditions and after TNF-α or TGF-β stimulation. Secreted proteins were quantified via mass spectrometry and expression of genes coding for secreted proteins was analyzed via Affymetrix Transcriptome Profiling. Thus, we provide comprehensive proteome and transcriptome data on the human cardiac fibroblast’s secretome. In the secretome of quiescent fibroblasts, 58% of the protein amount belonged to the ECM fraction. Interestingly, cytokines were responsible for 5% of the total protein amount in the secretome and up to 10% in the corresponding transcriptome. Furthermore, cytokine gene expression and secretion were upregulated upon TNF-α stimulation, while collagen secretion levels were elevated after TGF-β treatment. These results suggest that myocardial fibroblasts contribute to pro-fibrotic and to inflammatory processes in response to extracellular stimuli.


2021 ◽  
Author(s):  
Zewei Chen ◽  
Ziyi Zhao ◽  
Xinjie Hui ◽  
Junya Zhang ◽  
Yixue Hu ◽  
...  

The proteins secreted through type 1 secretion systems often play important roles in pathogenicity of various gram-negative bacteria. However, the type 1 secretion mechanism remains unknown. In this research, we observed the sequence features of RTX proteins, a major class of type 1 secreted substrates. We found striking non-RTX-motif amino acid composition patterns at the C-termini, most typically exemplified by the enriched '[FLI][VAI]' at the most C-terminal two positions. Machine-learning models, including deep-learning models, were trained using these sequence-based non-RTX-motif features, and further combined into a tri-layer stacking model, T1SEstacker, which predicted the RTX proteins accurately, with a 5-fold cross-validated sensitivity of ~0.89 at the specificity of ~0.94. Besides substrates with RTX motifs, T1SEstacker can also well distinguish non-RTX-motif type 1 secreted proteins, further suggesting their potential existence of common secretion signals. In summary, we made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified common sequence-based features at the C-termini, and developed a stacking model that can predict type 1 secreted proteins accurately.


Author(s):  
Kensei Taguchi ◽  
Sho Sugahara ◽  
Bertha C. Elias ◽  
Craig R. Brooks

2021 ◽  
Author(s):  
Joshua Mayoral ◽  
Rebekah B. Guevara ◽  
Yolanda Rivera-Cuevas ◽  
Vincent Tu ◽  
Tadakimi Tomita ◽  
...  

The intracellular parasite Toxoplasma gondii adapts to diverse host cell environments within a replicative compartment that is heavily decorated by secreted proteins. In attempts to identify novel parasite secreted proteins that influence host cell activity, we identified and characterized a trans-membrane dense granule protein dubbed GRA64 (TGME49_202620). We found that GRA64 is on the parasitophorous vacuolar membrane (PVM) and is partially exposed to the host cell cytoplasm in both tachyzoite and bradyzoite parasitophorous vacuoles. Using co-immunoprecipitation and proximity-based biotinylation approaches, we demonstrate that GRA64 appears to interact with certain components of the host Endosomal Sorting Complexes Required for Transport (ESCRT). Genetic disruption of GRA64 does not affect acute Toxoplasma virulence in mice nor encystation as observed via tissue cyst burdens in mice during chronic infection. However, ultrastructural analysis of Dgra64 tissue cysts using electron tomography revealed enlarged vesicular structures underneath the cyst membrane, suggesting a role for GRA64 in organizing the recruitment of ESCRT proteins and subsequent intracystic vesicle formation. This study uncovers a novel host-parasite interaction that contributes to an emerging paradigm in which specific host ESCRT proteins are recruited to the limiting membranes (PVMs) of tachyzoite and bradyzoite vacuoles formed during acute and chronic Toxoplasma infection.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
H. Oberti ◽  
G. Spangenberg ◽  
N. Cogan ◽  
R. Reyno ◽  
M. Feijoo ◽  
...  

Abstract Background The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. Results C. paspali isolates had compact genomes and secretome which accounted for 4.6–4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. Conclusions Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.


Sign in / Sign up

Export Citation Format

Share Document