zip family
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 4)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 121
Author(s):  
Denise Bellotti ◽  
Adriana Miller ◽  
Magdalena Rowińska-Żyrek ◽  
Maurizio Remelli

Zrt2 is a zinc transporter of the ZIP family. It is predicted to be located in the plasma membrane and it is essential for Candida albicans zinc uptake and growth at acidic pH. Zrt2 from C. albicans is composed of 370 amino acids and contains eight putative transmembrane domains and an extra-membrane disordered loop, corresponding to the amino acid sequence 126–215. This protein region contains at least three possible metal binding motifs: HxHxHxxD (144–153), HxxHxxEHxD (181–193) and the Glu- and Asp- rich sequence DDEEEDxE (161–168). The corresponding model peptides, protected at their termini (Ac-GPHTHSHFGD-NH2, Ac-DDEEEDLE-NH2 and Ac-PSHFAHAQEHQDP-NH2), have been investigated in order to elucidate the thermodynamic and coordination properties of their Zn2+ and Cu2+ complexes, with the further aim to identify the most effective metal binding site among the three fragments. Furthermore, we extended the investigation to the peptides Ac-GPHTHAHFGD-NH2 and Ac-PAHFAHAQEHQDP-NH2, where serine residues have been substituted by alanines in order to check if the presence of a serine residue may favor the displacement of amidic protons by Cu2+. In the native Zrt2 protein, the Ac-GPHTHSHFGD-NH2 region of the Zrt2 loop has the highest metal binding affinity, showing that three alternated histidines separated by only one residue (-HxHxH-) bind Zn2+ and Cu2+ more strongly than the region in which three histidines are separated by two and three His residues (-HxxHxxxH- in Ac-PSHFAHAQEHQDP-NH2). All studied Zrt2 loop fragments have lower affinity towards Zn2+ than the zinc(II) binding site on the Zrt1 transporter; also, all three Zrt2 regions bind Zn2+ and Cu2+ with comparable affinity below pH 5 and, therefore, may equally contribute to the metal acquisition under the most acidic conditions in which the Zrt2 transporter is expressed.


Author(s):  
Ankita Yadav ◽  
Sanoj Kumar ◽  
Rita Verma ◽  
Charu Lata ◽  
Indraneel Sanyal ◽  
...  

2021 ◽  
Author(s):  
Sichul Lee ◽  
Joohyun Lee ◽  
Felipe K. Ricachenevsky ◽  
Tracy Punshon ◽  
Ryan Tappero ◽  
...  

2021 ◽  
Author(s):  
Tanya Puccio ◽  
Alexander C Schultz ◽  
Claudia A Lizarraga ◽  
Ashley S Bryant ◽  
David J Culp ◽  
...  

Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP-family manganese transporter. Transcriptomic analysis of fermentor-grown cultures of SK36 WT and ΔssaACB strains identified pH-dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis and point to strategies for enhancing the safety of oral probiotics.


2021 ◽  
Author(s):  
Tanya Puccio ◽  
Karina Kunka ◽  
Todd Kitten

Streptococcus sanguinis is an important cause of infective endocarditis. In strain SK36, the ABC-family manganese transporter, SsaACB, is essential for virulence. We have now identified a ZIP-family protein, TmpA, as a secondary manganese transporter. A tmpA mutant had no phenotype, but a ΔssaACB ΔtmpA mutant was far more attenuated for serum growth and somewhat more attenuated for virulence in a rabbit model than its ΔssaACB parent. The growth of both mutants was restored by supplemental manganese, but the ΔssaACB ΔtmpA mutant required twenty-fold more and accumulated less. Although ZIP-family proteins are known for zinc and iron transport, TmpA-mediated transport of either metal was minimal. In contrast to ssaACB and tmpA, which appear ubiquitous in S. sanguinis, a mntH gene encoding an NRAMP-family transporter has been identified in relatively few strains, including VMC66. As in SK36, deletion of ssaACB greatly diminished VMC66 endocarditis virulence and serum growth, and deletion of tmpA from this mutant diminished virulence further. Virulence was not significantly altered by deletion of mntH from either VMC66 or its ΔssaACB mutant. This and the accompanying paper together suggest that SsaACB is of primary importance for endocarditis virulence while secondary transporters TmpA and MntH contribute to growth under differing conditions.


Stresses ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 105-118
Author(s):  
Soisungwan Satarug ◽  
David A. Vesey ◽  
Glenda C. Gobe

Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.


2021 ◽  
Vol 22 (10) ◽  
pp. 5355
Author(s):  
Karolina Maślińska-Gromadka ◽  
Anna Barabasz ◽  
Małgorzata Palusińska ◽  
Katarzyna Kozak ◽  
Danuta Maria Antosiewicz

In tobacco, the efficiency of Zn translocation to shoots depends on Zn/Cd status. Previous studies pointed to the specific contribution of root parts in the regulation of this process, as well as the role of NtZIP4A/B (from the ZIP family; Zrt Irt-like Proteins). Here, to verify this hypothesis, NtZIP4A/B RNAi lines were generated. Then, in plants exposed to combinations of Zn and Cd concentrations in the medium, the consequences of NtZIP4A/B suppression for the translocation of both metals were determined. Furthermore, the apical, middle, and basal root parts were examined for accumulation of both metals, for Zn localization (using Zinpyr-1), and for modifications of the expression pattern of ZIP genes. Our results confirmed the role of NtZIP4A/B in the control of Zn/Cd-status-dependent transfer of both metals to shoots. Furthermore, they indicated that the middle and basal root parts contributed to the regulation of this process by acting as a reservoir for excess Zn and Cd. Expression studies identified several candidate ZIP genes that interact with NtZIP4A/B in the root in regulating Zn and Cd translocation to the shoot, primarily NtZIP1-like in the basal root part and NtZIP2 in the middle one.


Sign in / Sign up

Export Citation Format

Share Document