scholarly journals Rapid Identification of Clinically Relevant Members of the Genus Exophiala by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Description of Two Novel Species, Exophiala campbellii and Exophiala lavatrina

2017 ◽  
Vol 55 (4) ◽  
pp. 1162-1176 ◽  
Author(s):  
Andrew M. Borman ◽  
Mark Fraser ◽  
Adrien Szekely ◽  
Daniel E. Larcombe ◽  
Elizabeth M. Johnson

ABSTRACT Exophiala is a ubiquitous pleomorphic genus comprising at least 40 species, many of which have been associated with superficial, visceral, or systemic infections in humans, other mammals, or cold-blooded animals. In this study, we investigated the potential of matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. A total of 89 isolates (including 50 human and 4 animal clinical isolates) stored in the National Collection of Pathogenic Fungi were identified by PCR amplification and sequencing of internal transcribed spacer region 1. Eighty-three of the isolates corresponded to 16 known species within Exophiala/Rhinocladiella . The remaining six isolates are shown by phylogenetic analyses based on four loci to represent two novel Exophiala species. Four isolates from domestic bathrooms which form a sister species with Exophiala lecanii-corni are described here as Exophiala lavatrina sp. nov. The remaining two isolates, both from subcutaneous infections, are distantly related to Exophiala oligosperma and are described here as Exophiala campbellii sp. nov. The triazoles and terbinafine exhibited low MICs against all Exophiala isolates in vitro . MALDI-TOF MS successfully distinguished all 18 species and identified all isolates after appropriate reference spectra were created and added to commercial databases. Intraspecific mean log scores ranged from 1.786 to 2.584 and were consistently significantly higher than interspecific scores (1.193 to 1.624), with the exception of E. lecanii-corni and E. lavatrina , for which there was considerable log score overlap. In summary, MALDI-TOF MS allows the rapid and accurate identification of a wide range of clinically relevant Exophiala species.

2016 ◽  
Vol 55 (2) ◽  
pp. 369-379 ◽  
Author(s):  
Maurizio Sanguinetti ◽  
Brunella Posteraro

ABSTRACTAlthough to a lesser extent than diagnostic bacteriology, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has recently revolutionized the diagnostic mycology workflow. With regard to filamentous fungi (or molds), the precise recognition of pathogenic species is important for rapid diagnosis and appropriate treatment, especially for invasive diseases. This review summarizes the current experience with MALDI-TOF MS-based identification of common and uncommon mold species ofAspergillus,Fusarium, Mucorales, dimorphic fungi, and dermatophytes. This experience clearly shows that MALDI-TOF MS holds promise as a fast and accurate identification tool, particularly with common species or typical strains of filamentous fungi.


2019 ◽  
Vol 36 (No. 6) ◽  
pp. 452-458 ◽  
Author(s):  
Štěpán Koudelka ◽  
Tereza Gelbíčová ◽  
Markéta Procházková ◽  
Renáta Karpíšková

The identification of Listeria species, lineages and serotypes remains a crucial issue not only in epidemic surveys, but also in monitoring of the diversity of bacteria in the food chain. The aim of this study was identification of L. monocytogenes strains at lineage and serotype level using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The performance of MALDI-TOF MS was tested to identify L. monocytogenes into two lineages (I and II) and four serotypes (1/2a, 1/2b, 1/2c and 4b) the most commonly found in humans and food. Total of 227 L. monocytogenes strains from different sources were subjected to the study. Some of strains (112) were used for main spectrum profile (MSP) library creation. Other strains of interest (115) were then correctly identified on the lineage level comparing with the library by MALDI-TOF MS analysis using Biotyper (90%) and ClinPro Tools (100%) software. The serotype identification with 55.7% (Biotyper) and 67.8% (ClinPro Tools) accuracy is rather a proof that under given conditions the method has not big potential to be used for serotyping. However, MALDI-TOF MS has a potential to identify lineages of L. monocytogenes of food and human origin.


2015 ◽  
Vol 54 (2) ◽  
pp. 376-384 ◽  
Author(s):  
S. P. Buckwalter ◽  
S. L. Olson ◽  
B. J. Connelly ◽  
B. C. Lucas ◽  
A. A. Rodning ◽  
...  

The value of matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria andNocardiaspp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162Mycobacteriumspecies and subspecies, 53Nocardiaspecies, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivateMycobacterium tuberculosisprior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148Nocardiaspecies isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed.


2004 ◽  
Vol 48 (2) ◽  
pp. 466-472 ◽  
Author(s):  
Florian Marks ◽  
Christian G. Meyer ◽  
Jürgen Sievertsen ◽  
Christian Timmann ◽  
Jennifer Evans ◽  
...  

ABSTRACT Increasing resistance, recrudescences, and treatment failure have led to the replacement of chloroquine with the combination of pyrimethamine (PYR) and sulfadoxine (SDX) as the first-line antimalarial drugs for treatment of uncomplicated Plasmodium falciparum malaria in several areas where this disease is endemic. The development of resistance to PYR-SDX is favored by incomplete treatment courses or by subtherapeutic levels in plasma. PYR-SDX resistance has been associated with several single-nucleotide polymorphisms (SNPs) in the P. falciparum dihydrofolate reductase (pfdhfr) and the P. falciparum dihydropteroate synthetase (pfdhps) genes. We have established assays based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) that conveniently allow the identification of SNPs associated with PYR resistance. Variants occurring at codon positions 16, 51, 59, and 108 of the pfdhfr gene were analyzed by MALDI-TOF MS in synthetic oligonucleotides to determine the detection threshold. In addition, 63 blood samples from subjects with P. falciparum parasitemia of various degrees were analyzed. The results were compared to those obtained by DNA sequencing of the respective gene fragment. The results of MALDI-TOF MS and DNA sequencing were consistent in 40 samples. In 23 samples two or three pfdhfr variants were detected by MALDI-TOF assays, whereas DNA-sequencing revealed one variant only. Simultaneous detection of two different mutations by biplex assays was, in principle, feasible. As demonstrated by the example of PYR resistance, MALDI-TOF MS allows for rapid and automated high-throughput assessment of drug sensitivity in P. falciparum malaria.


2005 ◽  
Vol 71 (10) ◽  
pp. 6292-6307 ◽  
Author(s):  
Robert E. Mandrell ◽  
Leslie A. Harden ◽  
Anna Bates ◽  
William G. Miller ◽  
William F. Haddon ◽  
...  

ABSTRACT Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. “Species-identifying” biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within ±5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) “strains” composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.


Chemotherapy ◽  
2016 ◽  
Vol 61 (4) ◽  
pp. 167-170 ◽  
Author(s):  
Ivana Mareković ◽  
Zrinka Bošnjak ◽  
Marko Jakopović ◽  
Zagorka Boras ◽  
Mateja Janković ◽  
...  

Background/Aims: Species-level identification of nontuberculous mycobacteria (NTM) is important in making decisions about the necessity and choice of antimicrobial treatment. The reason is predictable clinical significance and the susceptibility profile of specific NTM species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is recognized as a diagnostic tool for routine identification of bacteria and yeasts in the clinical laboratory based on protein fingerprint analysis. The aim of the study was to evaluate MALDI-TOF MS in the identification of NTM. Methods: A total of 25 NTM isolates from liquid cultures were identified with both polymerase chain reaction (PCR)-based hybridization assay and MALDI-TOF MS at the University Hospital Center Zagreb. Results: PCR-based hybridization assay identified 96% (24/25) and MALDI-TOF MS 80% (20/25) of tested NTM isolates. Five isolates with no reliable MALDI-TOF MS identification belonged to the Mycobacterium avium-intracellulare complex. Seventy percent (14/20) of NTM isolates successfully identified with MALDI-TOF MS had a score higher than 2.0, indicating reliable species identification. Conclusion: MALDI-TOF MS is a promising tool for the identification of NTM. With a further improvement of the protein extraction protocol, especially regarding the M. avium-intracellulare complex, MALDI-TOF MS could be an additional standard method for identification of NTM.


2020 ◽  
Vol 12 (01) ◽  
pp. 49-55
Author(s):  
Sonali Saha ◽  
Ajita Meenawat ◽  
Chinmoy Sahu ◽  
Vivek Srivastava ◽  
Shivam Yadav ◽  
...  

Abstract Context Early microbiological diagnosis and treatment of periodontal pathogens is important for successful retention of dental implants. Aims This study aimed to identify and monitor oral bacterial colonization after successful two-piece dental implants. Settings and Design In this study, 50 two-piece dental implant subjects were included and assessed clinically, radiographically, and microbiologically. Methods and Material All the parameters were recorded at various stages after prosthesis placement. In each stage, nonadherent (peri-implant sulcular fluid) and adherent (curetted inner threads) samples were collected. Semiquantitative anaerobic culture of the samples were done in Anoxomat system. Bacterial colonies were first identified by routine microbiological methods and then by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method. Statistical Analysis All the results were analyzed by appropriate statistical methods (Chi-square, one factor analysis of variance, etc.). Results All the bacterial isolates were identified in the MALDI-TOF MS system with no failure. After implant placement for the nonadherent samples, the frequency (%) of Fusobacterium nucleatum, Prevotella melaninogenica, and Propionibacterium acnes decreased whereas frequency (%) of Escherichia coli, Staphylococcus epidermidis, and Streptococcus mitis increased. For adherent samples, the frequency (%) of E. coli, Enterococcus faecalis, Porphyromonas gingivalis, P. melaninogenica, and Veillonella parvula decreased, whereas frequency (%) of S. mitis and Streptococcus mutans increased. The postimplant mean nonadherent and adherent bacterial load increased with time but not significantly over the periods (p = 0.302 and 0.123, respectively). Conclusion Combination of basic (semiquantitative culture method) and advanced microbiological method (MALDI-TOF MS) can be useful for accurate detection and monitoring of potential pathogens around two-piece dental implants.


2015 ◽  
Vol 53 (4) ◽  
pp. 1399-1402 ◽  
Author(s):  
Shuping Nie ◽  
Baoyu Tian ◽  
Xiaowei Wang ◽  
David H. Pincus ◽  
Martin Welker ◽  
...  

We explored the use of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for identification ofFusobacterium nucleatumsubspecies. MALDI-TOF MS spectra of fiveF. nucleatumsubspecies (animalis,fusiforme,nucleatum,polymorphum, andvincentii) were analyzed and divided into four distinct clusters, including subsp.animalis,nucleatum,polymorphum, andfusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34F. nucleatumclinical isolates to the subspecies level.


2018 ◽  
Vol 30 (4) ◽  
pp. 545-553
Author(s):  
Monika Harms ◽  
Volker Schmidt ◽  
Tilo Heydel ◽  
Jutta Hauptmann ◽  
Christine Ahlers ◽  
...  

Avian intestinal spirochetosis (AIS), an important but neglected disease in laying hens, is caused by Brachyspira pilosicoli, B. intermedia, and B. alvinipulli. Poultry are also frequently colonized by putatively nonpathogenic species such as B. murdochii and B. innocens. We evaluated the differentiation of Brachyspira species by 3 methods: sequencing of the reduced nicotinamide adenine dinucleotide (NADH) oxidase gene ( nox), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and a new multiplex (m)PCR targeting genes such as the tryptophanase A gene ( tnaA) and the p-aminobenzoyl-glutamate hydrolase subunit B gene ( abgB). Sequencing of 414 bp of the nox PCR amplification products generated from 41 pure cultures of avian Brachyspira isolates allowed presumptive species identification in 33 isolates with at least 99% identity in basic local alignment search tool analysis, including B. pilosicoli, B. intermedia, B. murdochii, B. innocens, and “ B. pulli”. MALDI-TOF MS analysis was found to be a reliable tool for differentiation after extension of the manufacturer’s database. In the mPCR, all isolates identified as B. pilosicoli and B. intermedia were positive for abgB and tnaA, respectively. The mPCR might be very useful in detecting Brachyspira species in mixed cultures including not only nonpathogenic species, such as B. innocens, but also one of the AIS pathogens. We found that MALDI-TOF MS analysis combined with the mPCR targeting tnaA and abgB was suitable for the identification of avian isolates of B. pilosicoli and B. intermedia, 2 important agents of AIS.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
Ariane G. Dinkelacker ◽  
Sophia Vogt ◽  
Philipp Oberhettinger ◽  
Norman Mauder ◽  
Jörg Rau ◽  
...  

ABSTRACTKlebsiella pneumoniaeand related species are frequent causes of nosocomial infections and outbreaks. Therefore, quick and reliable strain typing is crucial for the detection of transmission routes in the hospital. The aim of this study was to evaluate Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) as rapid methods for typing clinicalKlebsiellaisolates in comparison to whole-genome sequencing (WGS), which was considered the gold standard for typing and identification. Here, 68 clinicalKlebsiellastrains were analyzed by WGS, FTIR, and MALDI-TOF MS. FTIR showed high discriminatory power in comparison to the WGS reference, whereas MALDI-TOF MS exhibited a low ability to type the isolates. MALDI-TOF mass spectra were further analyzed for peaks that showed high specificity for differentKlebsiellaspecies. Phylogenetic analysis revealed that theKlebsiellaisolates comprised three different species:K. pneumoniae,K. variicola, andK. quasipneumoniae. Genome analysis showed that MALDI-TOF MS can be used to distinguishK. pneumoniaefromK. variicoladue to shifts of certain mass peaks. The peaks were tentatively identified as three ribosomal proteins (S15p, L28p, L31p) and one stress response protein (YjbJ), which exhibit amino acid differences between the two species. Overall, FTIR has high discriminatory power to recognize the clonal relationship of isolates, thus representing a valuable tool for rapid outbreak analysis and for the detection of transmission events due to fast turnaround times and low costs per sample. Furthermore, specific amino acid substitutions allow the discrimination ofK. pneumoniaeandK. variicolaby MALDI-TOF MS.


Sign in / Sign up

Export Citation Format

Share Document