LEVERAGING THE COMBINED POWER OF PHYLOGENIES AND PALEOECOLOGY TO UNDERSTAND PATTERNS AND PROCESSES OF EVOLUTION IN THE FOSSIL RECORD

2019 ◽  
Author(s):  
James C. Lamsdell ◽  
2017 ◽  
Vol 91 (4) ◽  
pp. 829-846 ◽  
Author(s):  
David F. Wright ◽  
William I. Ausich ◽  
Selina R. Cole ◽  
Mark E. Peter ◽  
Elizabeth C. Rhenberg

AbstractA major goal of biological classification is to provide a system that conveys phylogenetic relationships while facilitating lucid communication among researchers. Phylogenetic taxonomy is a useful framework for defining clades and delineating their taxonomic content according to well-supported phylogenetic hypotheses. The Crinoidea (Echinodermata) is one of the five major clades of living echinoderms and has a rich fossil record spanning nearly a half billion years. Using principles of phylogenetic taxonomy and recent phylogenetic analyses, we provide the first phylogeny-based definition for the Clade Crinoidea and its constituent subclades. A series of stem- and node-based definitions are provided for all major taxa traditionally recognized within the Crinoidea, including the Camerata, Disparida, Hybocrinida, Cladida, Flexibilia, and Articulata. Following recommendations proposed in recent revisions, we recognize several new clades, including the Eucamerata Cole 2017, Porocrinoidea Wright 2017, and Eucladida Wright 2017. In addition, recent phylogenetic analyses support the resurrection of two names previously abandoned in the crinoid taxonomic literature: the Pentacrinoidea Jaekel, 1918 and Inadunata Wachsmuth and Springer, 1885. Last, a phylogenetic perspective is used to inform a comprehensive revision of the traditional rank-based classification. Although an attempt was made to minimize changes to the rank-based system, numerous changes were necessary in some cases to achieve monophyly. These phylogeny-based classifications provide a useful template for paleontologists, biologists, and non-experts alike to better explore evolutionary patterns and processes with fossil and living crinoids.


2019 ◽  
Author(s):  
Jacob D. Gardner ◽  
Kevin Surya ◽  
Chris L. Organ

ABSTRACTThe fossil record provides direct empirical data for understanding macroevolutionary patterns and processes. Inherent biases in the fossil record are well known to confound analyses of this data. Sampling bias proxies have been used as covariates in regression models to test for such biases. Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling bias proxy that incorporates geographic information and test it with a case study on early tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. We find strong evidence that geographic sampling bias explains supposed radiations in dispersal rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test for its effect.


2011 ◽  
Vol 434 ◽  
pp. 101-119 ◽  
Author(s):  
K Reaugh-Flower ◽  
GM Branch ◽  
JM Harris ◽  
CD McQuaid ◽  
B Currie ◽  
...  

2016 ◽  
Vol 550 ◽  
pp. 25-38 ◽  
Author(s):  
SW Ricci ◽  
DB Eggleston ◽  
DR Bohnenstiehl ◽  
A Lillis

Sign in / Sign up

Export Citation Format

Share Document