scholarly journals Matrix integral expansion of colored Jones polynomials for figure-eight knot

JETP Letters ◽  
2015 ◽  
Vol 101 (1) ◽  
pp. 51-56 ◽  
Author(s):  
A. Alexandrov ◽  
D. Melnikov
2016 ◽  
Vol 152 (7) ◽  
pp. 1333-1384 ◽  
Author(s):  
Yuri Berest ◽  
Peter Samuelson

In this paper we propose and discuss implications of a general conjecture that there is a natural action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein module of the complement of a knot $K\subset S^{3}$. We prove this in a number of nontrivial cases, including all $(2,2p+1)$ torus knots, the figure eight knot, and all 2-bridge knots (when $q=\pm 1$). As the main application of the conjecture, we construct three-variable polynomial knot invariants that specialize to the classical colored Jones polynomials introduced by Reshetikhin and Turaev. We also deduce some new properties of the classical Jones polynomials and prove that these hold for all knots (independently of the conjecture). We furthermore conjecture that the skein module of the unknot is a submodule of the skein module of an arbitrary knot. We confirm this for the same example knots, and we show that this implies that the colored Jones polynomials of $K$ satisfy an inhomogeneous recursion relation.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


2010 ◽  
Vol 19 (12) ◽  
pp. 1571-1595 ◽  
Author(s):  
STAVROS GAROUFALIDIS ◽  
XINYU SUN

The purpose of the paper is two-fold: to introduce a multivariable creative telescoping method, and to apply it in a problem of Quantum Topology: namely the computation of the non-commutative A-polynomial of twist knots. Our multivariable creative telescoping method allows us to compute linear recursions for sums of the form [Formula: see text] given a recursion relation for [Formula: see text] and the hypergeometric kernel c(n, k). As an application of our method, we explicitly compute the non-commutative A-polynomial for twist knots with -15 and 15 crossings. The non-commutative A-polynomial of a knot encodes the monic, linear, minimal order q-difference equation satisfied by the sequence of colored Jones polynomials of the knot. Its specialization to q = 1 is conjectured to be the better-known A-polynomial of a knot, which encodes important information about the geometry and topology of the knot complement. Unlike the case of the Jones polynomial, which is easily computable for knots with 50 crossings, the A-polynomial is harder to compute and already unknown for some knots with 12 crossings.


2001 ◽  
Vol 186 (1) ◽  
pp. 85-104 ◽  
Author(s):  
Hitoshi Murakami ◽  
Jun Murakami

2007 ◽  
Vol 16 (03) ◽  
pp. 267-332 ◽  
Author(s):  
LOUIS H. KAUFFMAN ◽  
SAMUEL J. LOMONACO

We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods to produce unitary representations of the braid groups that are dense in the unitary groups. Our methods are rooted in the bracket state sum model for the Jones polynomial. We give our results for a large class of representations based on values for the bracket polynomial that are roots of unity. We make a separate and self-contained study of the quantum universal Fibonacci model in this framework. We apply our results to give quantum algorithms for the computation of the colored Jones polynomials for knots and links, and the Witten–Reshetikhin–Turaev invariant of three manifolds.


Sign in / Sign up

Export Citation Format

Share Document